Publications by authors named "Meike Zerwas"

The neural cell adhesion molecule NCAM and its association with the polysialic acid (PSA) are believed to contribute to brain structural plasticity that underlies memory formation. Indeed, the attachment of long chains of PSA to the glycoprotein NCAM down-regulates its adhesive properties by altering cell-cell interactions. In the brain, the biosynthesis of PSA is catalyzed by two polysialyltransferases, which are differentially regulated during lifespan.

View Article and Find Full Text PDF

Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present.

View Article and Find Full Text PDF

The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as well as to rescue some pathological cognitive impairments. Whether its facilitating impact may be mediated through promoting neuronal plasticity is not known.

View Article and Find Full Text PDF

L1 is an adhesion molecule favorably influencing the functional and anatomical recoveries after central nervous system (CNS) injuries. Its roles in peripheral nervous system (PNS) regeneration are less well understood. Studies using knockout mice have surprisingly revealed that L1 has a negative impact on functional nerve regeneration by inhibiting Schwann cell proliferation.

View Article and Find Full Text PDF

It is now widely accepted that new neurons continue to be added to the brain throughout life including during normal aging. The finding of adult neurogenesis in the hippocampus, a structure involved in the processing of memories, has favored the idea that newborn neurons might subserve cognitive functions. Recent work on human post-mortem tissues and mice models of Alzheimer's disease (AD) has reported persistent hippocampal proliferative capacity during pathological aging.

View Article and Find Full Text PDF