Publications by authors named "Meike S Motika"

Flavin-containing monooxygenase (FMO) 5 belongs to a family of enzymes that catalyze the oxygenation of nucleophilic N- and S-containing compounds. The FMO enzyme family consists of five forms (FMOs1-5) that share about 50-60% sequence identity to each other. A comparison of FMOs showed that the pH-dependence profile for functional activity of FMO5 differed significantly from that of other FMO enzymes.

View Article and Find Full Text PDF

The flavin-containing monooxygenase (FMO) family of enzymes oxygenates nucleophilic xenobiotics and endogenous substances. Human FMO3 and FMO5 are the predominant FMO forms in adult liver. These enzymes are naturally membrane-bound, and recombinant proteins are commercially available as microsomal preparations from insect cells (i.

View Article and Find Full Text PDF

The disorder trimethylaminuria (TMAu) often manifests itself in a body odor for individuals affected. TMAu is due to decreased metabolism of dietary-derived trimethylamine (TMA). In a healthy individual, 95% or more of TMA is converted by the flavin-containing monooxygenase 3 (FMO3, EC 1.

View Article and Find Full Text PDF

The objective of the study was to investigate the regulation of hepatic flavin-containing monooxygenases (Fmo) Fmo1, Fmo3, Fmo4, and Fmo5 in three different mouse models of inflammation, including treatment with Citrobacter rodentium, lipopolysaccharide (LPS), and dextran sulfate sodium (DSS). Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the steady-state mRNA levels for the various Fmo isoforms in these mouse models of inflammation during different treatment time courses. Fmo3 mRNA was most significantly down-regulated in C.

View Article and Find Full Text PDF

This review summarizes information concerning the association of the human flavin-containing monooxygenase 3 (FMO3) and human diseases. Human FMO3 oxygenates a wide variety of nucleophilic heteroatom-containing xenobiotics, including endogenous substrates and various clinically important drugs. In this article, the authors discuss the association of FMO3 with human disease, including: i) direct association of FMO3 genetic mutations to human genetic disease; ii) association of FMO3 genetic polymorphism to altered drug metabolism and, therefore, indirect association of FMO3 with drug therapeutic efficacy of human disease; and iii) the potential impact and/or effect of FMO3 transcriptional regulation during disease states.

View Article and Find Full Text PDF