Spinal cord injury (SCI) is associated with venous vascular dysfunction below the level of injury, resulting in dysregulation of tissue fluid homeostasis in afflicted skin. The purpose of this study was to determine whether loss of neuronal control in chronic SCI also affects the skin lymphatic system. Morphology of lymphatics was characterized by immunohistochemistry and lymphatic gene expression profiles determined by DNA microarray analysis.
View Article and Find Full Text PDFPatients with spinal cord injury have a predisposition to develop pressure ulcers. Specific characteristics of the patients' skin potentially involved have not yet been identified. The purpose of this investigation was to determine whether loss of neuronal control affects cellular and molecular homeostasis in the skin.
View Article and Find Full Text PDFThe unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based transport to deliver essential cargo into dendrites. To test different models of differential motor protein regulation and to understand how different compartments in neurons are supplied with necessary functional proteins, we studied mechanisms of dendritic transport, using Drosophila as a model system. Our data suggest that dendritic targeting systems in Drosophila and mammals are evolutionarily conserved, since mammalian cargoes are moved into appropriate domains in Drosophila.
View Article and Find Full Text PDF