Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear.
View Article and Find Full Text PDFLinking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear.
View Article and Find Full Text PDFLayer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood.
View Article and Find Full Text PDFIntroduction: In patients with severe auditory impairment, partial hearing restoration can be achieved by sensory prostheses for the electrical stimulation of the central nervous system. However, these state-of-the-art approaches suffer from limited spectral resolution: electrical field spread depends on the impedance of the surrounding medium, impeding spatially focused electrical stimulation in neural tissue. To overcome these limitations, optogenetic activation could be applied in such prostheses to achieve enhanced resolution through precise and differential stimulation of nearby neuronal ensembles.
View Article and Find Full Text PDFThe inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's non-lemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and non-primary auditory cortices; forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches.
View Article and Find Full Text PDFThe inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking.
View Article and Find Full Text PDFAlterations in inhibitory circuits of the primary auditory cortex (pAC) have been shown to be an aspect of aging and age-related hearing loss (AHL). Several studies reported a decline in parvalbumin (PV) immunoreactivity in aged rodent pAC of animals displaying AHL and conclude a relationship between reduced sensitivity and declined PV immunoreactivity. However, it remains elusive whether AHL or a general molecular aging is causative for decreased PV immunoreactivity.
View Article and Find Full Text PDFSuccessful navigation in complex acoustic scenes requires focusing on relevant sounds while ignoring irrelevant distractors. It has been argued that the ability to track stimulus statistics and generate predictions supports the choice of what to attend and what to ignore. However, the role of these predictions about future auditory events in drafting decisions remains elusive.
View Article and Find Full Text PDFHCN1 compartmentalization in CA1 pyramidal cells, essential for hippocampal information processing, is believed to be controlled by the extracellular matrix protein Reelin. Expression of Reelin, in turn, is stimulated by 17β-estradiol (E2). In this study, we therefore tested whether E2 regulates the compartmentalization of HCN1 in CA1 via Reelin.
View Article and Find Full Text PDF