Publications by authors named "Meike J Ochs"

5-Lipoxygenase (5-LO) catalyses the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. An increased level of leukotrienes is associated with chronic inflammatory diseases such as asthma or atherosclerosis. In this MiniReview, we focus on recent findings regarding alternative splice variants of 5-LO with a special emphasis on two potential protein isoforms expressed in human B-lymphocytes which might be of interest as new drug targets.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have emerged as important regulators in human physiological and pathological processes. We summarize the current knowledge about the role of miRNA involved in the control of inflammatory responses with a special focus on eicosanoid signalling. Cyclooxygenase 2 - the key enzyme of the prostanoid pathway - is regulated by different miRNAs such as miRNA-101, miR199a, miR26b and miR-146a.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. Recently, we have demonstrated that 5-LO mRNA expression is regulated by alternative splicing and nonsense-mediated mRNA decay (NMD). In addition to this, 5-LO protein expression was reduced on translational level in UPF1 knockdown cells, suggesting that UPF1 has a positive influence on 5-LO translation.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes (LT), a group of inflammatory lipid mediators derived from arachidonic acid. Here, we investigated the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD). In the present study, we report the identification of 2 truncated transcripts and 4 novel 5-LO splice variants containing premature termination codons (PTC).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have emerged as important regulators in human physiological and pathological processes. Recent investigations implicated the involvement of miRNAs in the immune system development and function and demonstrated an unexpected new regulatory level. We summarize the current knowledge about miRNA control in the development of the immune system and discuss their role in the immune and inflammatory responses with a special focus on eicosanoid signaling.

View Article and Find Full Text PDF

Scope: The objective of this study was to elucidate molecular mechanisms behind the antitumor activities of the isothiocyanate sulforaphane (SFN) in colorectal cancer cells.

Methods And Results: Cell growth was determined by BrdU incorporation and crystal violet staining. Protein levels were examined by Western blot analysis.

View Article and Find Full Text PDF