Publications by authors named "Meike Boosen"

Unlabelled: Renal mesangial cells are regarded as main players in glomerular inflammatory diseases. To investigate a possible crosstalk between inflammatory and hypoxia-driven signaling processes, we stimulated cultured mouse mesangial cells with different inflammatory agents and analyzed the expression of prolyl hydroxylase domain containing proteins (PHDs), the main regulators of hypoxia-inducible factor (HIF) stability. Administration of IL-1β (1 nM) and TNF-α (1 nM), a combination further referred to as cytokine mix (CM), resulted in a fivefold increase in PHD3 but not PHD1 and PHD2 mRNA expression compared to untreated controls.

View Article and Find Full Text PDF

Accumulating lines of evidence indicate that hydrogen sulfide (H2S) contributes to the processing of chronic pain. However, the sources of H2S production in the nociceptive system are poorly understood. Here we investigated the expression of the H2S releasing enzyme cystathionine γ-lyase (CSE) in the nociceptive system and characterized its role in chronic pain signaling using CSE deficient mice.

View Article and Find Full Text PDF

Inflammatory glomerular kidney diseases are often accompanied with a massive production of reactive oxygen species (ROS) that affect the function of the glomerular filtration barrier and contribute to mesangiolysis via the induction of cell death in mesangial cells. Intriguingly, ROS also trigger fine-tuned signalling processes that affect gene expression and cell proliferation or migration. To define such redox-driven signalling devices, a proteomics approach was performed to identify the formation of protein complexes induced by ROS.

View Article and Find Full Text PDF

Background And Purpose: So far, there is only limited information about the regulation of the endogenous synthesis of hydrogen sulfide (H(2) S), an important gaseous signalling molecule. This study was done to evaluate the redox-dependent signalling events that regulate the expression of the H(2) S synthesising enzyme cystathionine-γ-lyase (CSE) in rat mesangial cells.

Experimental Approach: The effects of platelet-derived growth factor (PDGF)-BB and antioxidants on CSE expression and activity in cultured rat renal mesangial cells were assessed.

View Article and Find Full Text PDF

Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensive myosin light chain (MLC) phosphorylation and induction of apoptosis. Our analyses show that the synergistic proapoptotic effect of Dlk/Par-4 complexes is abrogated when either Dlk/Par-4 interaction or Dlk kinase activity is impaired.

View Article and Find Full Text PDF

Cytokines and nitric oxide (NO) stimulate rat mesangial cells to synthesize and secrete inflammatory mediators. To understand better the signaling pathways that contribute to this response, we exposed rat mesangial cells to the prototypic inflammatory cytokine IL-1beta and analyzed the changes in the pattern of gene expression. IL-1beta downregulated the gene encoding the matricellular glycoprotein secreted modular calcium-binding protein 1 (SMOC-1) in mesangial cells.

View Article and Find Full Text PDF

Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4.

View Article and Find Full Text PDF

Prostate apoptosis response-4 (Par-4) is a 38-kDa protein originally identified as a gene product upregulated in prostate cancer cells undergoing apoptosis. Cell death mediated by Par-4 and its interaction partner DAP like kinase (Dlk) is characterized by dramatic changes of the cytoskeleton. To uncover the role of the cytoskeleton in Par-4/Dlk-mediated apoptosis, we analyzed Par-4 for a direct association with cytoskeletal structures.

View Article and Find Full Text PDF

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic protein originally identified as a gene product upregulated in prostate tumor cells undergoing apoptosis. Down-regulation of Par-4 has been linked to several cancers. Since Par-4 also plays a crucial role in neuronal apoptosis, we investigated the expression of Par-4 in tumor cell lines derived from representative tumor types of the CNS, including primitive neuroectodermal tumor (PNET), medulloblastoma, neuroblastoma and glioma of human, rat and murine origin.

View Article and Find Full Text PDF