Publications by authors named "Meijuan Niu"

Macrophages represent an important viral reservoir in HIV-1-infected individuals. Different from T cells, HIV-1 assembly in macrophages occurs at intracellular compartments termed virus-containing compartments (VCCs). Our previous research in HeLa cells - in which assembly resembles that found in infected T cells - suggested that late endosomes/lysosomes (LELs) play a role in HIV-1 trafficking towards its assembly sites.

View Article and Find Full Text PDF

HIV-1 hijacks host proteins involved in membrane trafficking, endocytosis, and autophagy that are critical for virus replication. Molecular details are lacking but are essential to inform on the development of alternative antiviral strategies. Despite their potential as clinical targets, only a few membrane trafficking proteins have been functionally characterized in HIV-1 replication.

View Article and Find Full Text PDF

Translation initiation of the human immunodeficiency virus-type 1 (HIV-1) genomic mRNA (vRNA) is cap-dependent or mediated by an internal ribosome entry site (IRES). The HIV-1 IRES requires IRES-transacting factors (ITAFs) for function. In this study, we evaluated the role of the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a potential ITAF for the HIV-1 IRES.

View Article and Find Full Text PDF

Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that the pan-retroviral nucleocapsid (NC) and HIV-1 pr55 (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yields self-assembling BMCs that have HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs, and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size.

View Article and Find Full Text PDF
Article Synopsis
  • Biomolecular condensates (BMCs) are crucial for virus replication, particularly in HIV-1, yet their exact mechanisms are not fully understood.
  • The study investigates how variations in the HIV-1 Gag protein's structure and the presence of viral genomic RNA impact the size and number of these condensates during virus assembly.
  • Findings indicate that the environment (nuclear vs. cytoplasmic) and specific mutations in the Gag protein affect the properties of BMCs, providing insights that could lead to new therapeutic strategies against HIV-1.
View Article and Find Full Text PDF

Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes.

View Article and Find Full Text PDF

Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5'untranslated region (5'UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF).

View Article and Find Full Text PDF

The duality of liquid-liquid phase separation (LLPS) of cellular components into membraneless organelles defines the nucleation of both normal and disease processes including stress granule (SG) assembly. From mounting evidence of LLPS utility by viruses, we discover that HIV-1 nucleocapsid (NC) protein condenses into zinc-finger (ZnF)-dependent LLPSs that are dynamically influenced by cytosolic factors. ZnF-dependent and Zinc (Zn)-chelation-sensitive NC-LLPS are formed in live cells.

View Article and Find Full Text PDF

Nucleoside analogs have proven effective for the inhibition of viral polymerases and are the foundation of many antiviral therapies. In this work, the antiretroviral potential of 6-azauracil analogs was assessed using activity-based protein profiling techniques and functional assays. Probes based on the 6-azauracil scaffold were examined and found to bind to HCV polymerase and HIV-1 reverse transcriptase through covalent modification of residues near the active site.

View Article and Find Full Text PDF

Background: Mammalian cells harbour RNA quality control and degradative machineries such as nonsense-mediated mRNA decay that target cellular mRNAs for clearance from the cell to avoid aberrant gene expression. The role of the host mRNA decay pathways in macrophages in the context of human immunodeficiency virus type 1 (HIV-1) infection is yet to be elucidated. Macrophages are directly infected by HIV-1, mediate the dissemination of the virus and contribute to the chronic activation of the inflammatory response observed in infected individuals.

View Article and Find Full Text PDF

Background: The ability of human immunodeficiency virus type 1 (HIV-1) to form a stable viral reservoir is the major obstacle to an HIV-1 cure and post-transcriptional events contribute to the maintenance of viral latency. RNA surveillance proteins such as UPF1, UPF2 and SMG6 affect RNA stability and metabolism. In our previous work, we demonstrated that UPF1 stabilises HIV-1 genomic RNA (vRNA) and enhances its translatability in the cytoplasm.

View Article and Find Full Text PDF

In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5' leader and 3' trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm.

View Article and Find Full Text PDF

Human Immunodeficiency Virus type 1 (HIV-1) major structure protein Gag is synthesized in the cytoplasm, assembles on the plasma membrane, subsequently buds and releases. HIV-1 viral particles incorporate a number of host proteins to facilitate or inhibit HIV-1 replication. Here we identify a new host protein, coiled-coil domain containing protein 8 (CCDC8), in HIV-1 particles.

View Article and Find Full Text PDF

Background: tRNA(Lys3) annealing to the viral RNA of human immunodeficiency virus type-1 (HIV-1) is an essential step in the virus life cycle, because this tRNA serves as the primer for initiating reverse transcription. tRNA(Lys3) annealing to viral RNA occurs in two steps. First, Gag promotes annealing of tRNA(Lys3) to the viral RNA during cytoplasmic HIV-1 assembly.

View Article and Find Full Text PDF

RNA helicase A (RHA), a DExD/H protein, contains a stretch of repeated arginine and glycine-glycine (RGG) residues and an oligonucleotide/oligosaccharide-binding fold (OB-fold) at the C-terminus. RHA has been reported to function as a transcriptional cofactor. This study shows the role of RGG and OB-fold domains of RHA in the activation of transcription and splicing of HIV-1 RNA.

View Article and Find Full Text PDF

RNA helicase A (RHA), a DExD/H box protein, plays critical roles in a wide variety of cellular or viral functions. RHA contains a conserved core helicase domain that is flanked by five other domains. Two double-stranded RNA binding domains (dsRBD1 and dsRBD2) are at the N-terminus, whereas HA2 (helicase associated 2), OB-fold (oligonucleotide- or oligosaccharide-binding fold), and RGG (repeats of arginine and glycine-glycine residues) domains are at the C-terminus.

View Article and Find Full Text PDF

Background: RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells.

View Article and Find Full Text PDF

RNA helicase A (RHA) promotes multiple steps in HIV-1 production including transcription and translation of viral RNA, annealing of primer tRNA(Lys3) to viral RNA, and elevating the ratio of unspliced to spliced viral RNA. At its amino terminus are two double-stranded RNA binding domains (dsRBDs) that are essential for RHA-viral RNA interaction. Linking the dsRBDs to the core helicase domain is a linker region containing 6 predicted helices.

View Article and Find Full Text PDF

The 5' untranslated region (5' UTR) of HIV-1 genomic RNA (gRNA) includes structural elements that regulate reverse transcription, transcription, translation, tRNA(Lys3) annealing to the gRNA, and gRNA dimerization and packaging into viruses. It has been reported that gRNA dimerization and packaging are regulated by changes in the conformation of the 5'-UTR RNA. In this study, we show that annealing of tRNA(Lys3) or a DNA oligomer complementary to sequences within the primer binding site (PBS) loop of the 5' UTR enhances its dimerization in vitro.

View Article and Find Full Text PDF

RNA helicase A (RHA) promotes multiple steps of HIV-1 RNA metabolism during viral replication, including transcription, translation, and the annealing of primer tRNA(3)(Lys) to the viral RNA. RHA is a member of the DExH subclass of RNA helicases that uniquely contains two double-stranded RNA binding domains (dsRBDs) at its N terminus. Here, we performed a genome-wide analysis of the interaction of RHA with HIV-1 RNA both in vitro, using fluorescence polarization, and during viral replication, using an RNA-protein coprecipitation assay.

View Article and Find Full Text PDF

During tRNA(Lys3) annealing in HIV-1, tRNA(Lys3) binds to both the primer binding site (PBS) and to an 8 nucleotide base-paired sequence upstream of the PBS known as the primer activation signal (PAS). In protease-negative (Pr(-)) HIV-1, the amount of tRNA(Lys3) annealed by Gag is 35% less than that annealed by mature nucleocapsid (NCp7) in protease-positive (Pr(+)) virions. Gag-annealed tRNA(Lys3) also has a reduced ability to initiate reverse transcription, and binds less tightly to viral RNA than NCp7-annealed tRNA(Lys3).

View Article and Find Full Text PDF

In protease-negative human immunodeficiency virus type 1 (HIV-1) [Pr(-)], the amount of tRNA(3)(Lys) annealed by Gag is modestly reduced ( approximately 25%) compared to that annealed by mature nucleocapsid (NCp7) in protease-positive HIV-1 [Pr(+)]. However, the tRNA(3)(Lys) annealed by Gag also has a strongly reduced ability to initiate reverse transcription and binds less tightly to viral RNA. Both in vivo and in vitro, APOBEC3G (A3G) inhibits tRNA(3)(Lys) annealing facilitated by NCp7 but not annealing facilitated by Gag.

View Article and Find Full Text PDF

Attempts to use the mouse as a model system for studying AIDS are stymied by the multiple blocks to human immunodeficiency virus type 1 (HIV-1) replication that exist in mouse cells at the levels of viral entry, transcription, and Gag assembly and processing. In this report, we describe an additional block in the selective packaging of tRNA(3Lys) into HIV-1 produced in murine cells. HIV-1 and murine leukemia virus (MuLV) use tRNA(3Lys) and tRNA(Pro), respectively, as primers for reverse transcription.

View Article and Find Full Text PDF

During HIV-1 assembly, tRNA(Lys3), the primer for reverse transcriptase (RT) in HIV-1, is selectively packaged into the virus due to a specific interaction between Gag and lysyl-tRNA synthetase (LysRS). However, while Gag alone will incorporate LysRS, tRNA(Lys3) packaging also requires the presence of RT thumb domain sequences in GagPol. The formation of a tRNA(Lys3) packaging/annealing complex involves an interaction between Gag/GagPol/viral RNA and LysRS/tRNA(Lys), and herein, we have investigated whether the transfer of tRNA(Lys3) from LysRS to RT sequences in Pol by a currently unknown mechanism is facilitated by an interaction between LysRS and Pol.

View Article and Find Full Text PDF