Publications by authors named "Meijin Du"

Fluoroquinolone antibiotics (FQs) have been used worldwide due to their extended antimicrobial spectrum. However, the overuse of FQs leads to frequent detection in the environment and cannot be efficiently removed. Microalgae-based constructed wetland systems have been proven to be a relatively proper method to treat FQs, mainly by microalgae, plants, microorganisms, and sediments.

View Article and Find Full Text PDF

The neurotoxicity induced by dioxins has been recognized as a serious concern to sensitive population living near waste incineration plants. However, investigating the intracellular neurotoxicity of dioxin in humans and the corresponding mitigation strategies has been barely studied. Thus, a domestic waste incineration plant was selected in this study to characterize the neurotoxicity risks of sensitive populations by estimating the ratio of dioxin in human cells using membrane structure dynamics simulation; and constructing a complete dioxin neurotoxicity adverse outcome pathway considering the binding process of AhR/ARNT dimer protein and dioxin response element (DRE).

View Article and Find Full Text PDF

The impact of microplastics in lake water environments on microalgae carbon fixation and microplastic sedimentation has attracted global attention. The molecular dynamic simulation method was used to design microplastic additive proportioning schemes for improving microalgae carbon fixation and microplastic sedimentation. Results showed that the harm of microplastics can be effectively alleviated by adjusting the proportioning scheme of plastic additives.

View Article and Find Full Text PDF

Modern insecticide substitutes using acetylcholine receptors (nAChR) as biochemical targets, such as neonicotinoid insecticides (NNIs), have been extensively researched. Only 12 compounds have been experimentally realized since the initial discovery of imidacloprid. Increasingly, the bottleneck in this field is to rapidly determine the synthesizability of NNI substitutes.

View Article and Find Full Text PDF

Synthetic musks (SMs), the widely used odor component in personal care products have attracted attention due to their environmental impacts, especially the abortion risks. Given that women comprise a significant consumer demographic for personal care products, it is imperative to promptly initiate research on avoidance strategies for pregnant women concerning their exposure to synthetic chemicals (SMs). This study tried to establish novel theoretical approaches to eliminate the abortion risks of SM-contained body wash by designing the SM-contained proportioning scheme and analyzing the abortion risk mechanisms.

View Article and Find Full Text PDF

Antibiotic selectivity and bacterial resistance are critical global public health issues. We constructed a multi-class machine learning model to study antibiotic effects on human intestinal microbiota abundance and identified key features. Binding energies of β-lactam antibiotics with Escherichia coli PBP3 mutant protein were calculated, and a 2D-QSAR model for bacterial resistance was established.

View Article and Find Full Text PDF

Synthetic musks (SMs) with pleasant odor have been extensively used in personal care products. SMs are emerging contaminants due to the wide detection in human breast milk and blood, and even caused miscarriage to pregnant women. Aiming at this, the two-dimensional quantitative structure-activity relationship (2D-QSAR) coupling with three-dimensional quantitative structure-activity relationship (3D-QSAR) methods were first used to analyze the SM-induced risk of miscarriage in pregnant women, and the above two models were used to mutually authenticate each other.

View Article and Find Full Text PDF

Phthalic acid esters (PAEs) have the characteristics of environmental persistence. Therefore, improving the biodegradability of PAEs is the key to reducing the extent of ecological harm realized. Firstly, the scoring function values of PAEs docking with various degrading enzymes in sewage treatment were calculated.

View Article and Find Full Text PDF

The accumulation of potentially harmful substances in tea garden soils and tea leaves, especially persistent organic pollutants (POPs), is a special concern for tea consumers worldwide. However, their potential health and ecological risks in tea gardens have rarely been investigated. This study proposed measures to improve the degradation ability of POPs by the tea rhizosphere and to reduce the human health risks caused by POPs after tea consumption.

View Article and Find Full Text PDF

Lianhuaqingwen (LH), one traditional Chinese medicine (TCM), has been used to treat the coronavirus disease 2019 (COVID-19), but its ecotoxicity with potential human health security has not been well investigated. To overcome such adverse effects and improve its medication efficacy, an intelligent multi-method integrated dietary scheme, screening, and performance evaluation approach was developed. Thirteen LH compounds were selected, and the main protease (Mpro) was used as the potential drug target.

View Article and Find Full Text PDF

This paper analyzed the degradation pathways of petroleum hydrocarbon degradation bacteria, screened the main degradation pathways, and found the petroleum hydrocarbon degradation enzymes corresponding to each step of the degradation pathway. Through the Copeland method, the best inoculation program of petroleum hydrocarbon degradation bacteria in a polluted site was selected as follows: single oxygenation path was dominated by , hydroxylation path was dominated by OB3b, secondary oxygenation path was dominated by , secondary hydroxylation path was dominated by , double oxygenation path was dominated by ADP1, hydrolysis path was dominated by , and CoA path was dominated by GS-15 to repair petroleum hydrocarbon contaminated sites. The Copeland method score for this solution is 22, which is the highest among the 375 solutions designed in this paper, indicating that it has the best degradation effect.

View Article and Find Full Text PDF

Polychlorinated naphthalenes (PCNs) are widely distributed in the aquatic environment and can be transmitted through the food chain, which can amplify their toxic effects on human. To inhibit their transmission in the trophic level, this study aimed to predict the joint toxicity mechanism of polychlorinated naphthalenes (PCNs) to the key organisms and control scheme of its toxicity in the aquatic food chain (green algae-Daphnia magna-fish). The toxic effect grade and mode of action (MoA) of PCNs on the food chain were first predicted to guide the establishment of toxic mechanism model.

View Article and Find Full Text PDF

Cyanobacteria are photosynthetic autotrophic aquatic prokaryotes. One of the methods for controlling cyanobacterial blooms is to destroy the phycobiliproteins required for photosynthesis. In this study, to improve the biodegradation of the fluoroquinolones through inhibit cyanobacteria, the molecular docking scores of 32 fluoroquinolones (FQs) with four categories of phycobiliproteins from cyanobacteria were calculated after sine normalization to characterize the binding ability between them.

View Article and Find Full Text PDF

In the proposed model, the estrogen activity values and thyroid hormone activity values of PAEs molecules were normalized using the TOPSIS method by eliminating the dimension coefficients, and the comprehensive activity values of estrogen and thyroid hormone were obtained by analyzing the activity of each hormone and assigning the corresponding weight. The five pharmacophore models of hormone combined activity were constructed using the comprehensive activity values. Hypol 1 was the optimal pharmacophore model, showing good predictive power and significance.

View Article and Find Full Text PDF

Phthalate acid esters (PAEs) are among the most widely used plasticizers in plastic products. They are easily diffused from plastic during use and seriously affect the environment and human health. Therefore, designing environmentally friendly PAE derivatives has important practical applications.

View Article and Find Full Text PDF

In this paper, two-dimensional quantitative structure-activity relationship (2D-QSAR) and principal component analysis (PCA) methods were employed to screen the main parameters affecting the genotoxicity of fluoroquinolones (FQs), and the rules affecting the genetic toxicity of FQs were investigated by combining 2D-QSAR and PCA with the sensitivity analysis method. First, four types of parameters were calculated, namely, the geometric parameters (7), electronic parameters (5), physical and chemical parameters (8), and spectral parameters (7), but the physical and chemical parameters heat of formation (HF) and critical volume (CV) were excluded after the establishment of the 2D-QSAR model. Then, after PCA, it was found that the first principal component represented the main driving factors affecting the molecular genetic toxicity of FQs.

View Article and Find Full Text PDF

Organophosphate flame retardants (OPFRs) have been detected in various environmental matrices and have been identified as emerging contaminants (EC). Given the adverse influence of OPFRs, many researchers have focused on the absorption, bioaccumulation, metabolism, and internal exposure processes of OPFRs in animals and humans. This paper first reviews the evolution of various types of flame retardants (FRs) and the environmental pollution of OPFRs, the different absorption pathways of OPFRs by animals and humans (such as inhalation, ingestion, skin absorption and absorption), and then summarizes the environmental impacts of OPFRs, including their biological toxicity, bioaccumulation, persistence, migration, endocrine disruption and carcinogenicity.

View Article and Find Full Text PDF

Synthetic musks (SMs) are promising fragrance additives used in personal care products (PCPs). The widespread presence of SMs in environmental media remains a serious risk because of their harmful effects. Recently, the environmental hazards of SMs have been widely reported in various environmental samples including those from coastal and marine regions.

View Article and Find Full Text PDF

In this study, the hexachlorobenzene molecule was modified by three-dimensional quantitative structure-activity relationship (3D-QSAR) models and a full factor experimental design to obtain new hexachlorobenzene molecules with low migration ability. The 3D-QSAR models (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) were constructed by SYBLY-X 2.0 software, using experimental data of octanol-air partition coefficients (K) for 12 chlorobenzenes (CBs) congeners as the dependent variable, and the structural parameters of CBs as independent variables, respectively.

View Article and Find Full Text PDF