Publications by authors named "Meijiao Gao"

Background: The rapid turnover of the intestinal epithelium is driven by the proliferation and differentiation of intestinal stem cells (ISCs). The dynamics of the F-actin cytoskeleton are critical for maintaining intercellular force and the signal transduction network. However, it remains unclear how direct interference with actin polymerization impacts ISC homeostasis.

View Article and Find Full Text PDF

Neutral polysaccharides such as konjac glucomannan, starch and pullulan are abundant in nature and have unique property. Their nanofibers hold great potential for biomedicine, which however, are seldom applied in the field due to the lack of crosslinking method. In this work, we report a periodate oxidation - adipic acid dihydrazide (ADH) crosslinking strategy to prepare robust and biocompatible neutral polysaccharide nanofibers.

View Article and Find Full Text PDF

As compared with 2D cell line cultures, 3D intestinal organoids are better at maximally recapitulating the physiological features of stem cells in vivo. However, the complex 3D structure is an obstacle which must be objectively and automatically evaluated to assess colony growth and regeneration. Meanwhile, no internal standard currently exists for evaluating the size of heterogeneities in organoids or defining those regenerating colonies.

View Article and Find Full Text PDF

Although the regulatory network of G2/M phase transition has been intensively studied in mammalian cell lines, the identification of morphological and molecular markers to identify G2/M phase transition in vivo remains elusive. In this study, we found no obvious morphological changes between the S phase and G2 phase in mice intestinal epithelial cells. The G2 phase could be identified by Brdu incorporation resistance, marginal and scattered foci of histone H3 phosphorylated at Ser10 (pHH3), and relatively intact Golgi ribbon.

View Article and Find Full Text PDF

We reported crosslinking of electrospun nanofibers of three representative pectins (high-methoxylated, low-methoxylated, low-methoxylated and amidated pectin) and characterization of the crosslinked nanofibers. One mono-crosslinking strategy and two dual-crosslinking strategies were developed. Mono-crosslinking is achieved using calcium ions (Ca) to crosslink carboxylate ions in galacturonic acid residues.

View Article and Find Full Text PDF