Drug resistance remains a challenge in ovarian cancer. In addition to aberrant activation of relevant signaling pathways, the adaptive stress response is emerging as a new spotlight of drug resistance in cancer cells. Stress granules (SGs) are one of the most important features of the adaptive stress response, and there is increasing evidence that SGs promote drug resistance in cancer cells.
View Article and Find Full Text PDFBackground: Multimodality magnetic resonance imaging (MRI) is widely used to detect vascular cognitive impairment (VCI). However, a bibliometric analysis of this issue remains unknown. Therefore, this study aimed to explore the research hotspots and trends of multimodality MRI on VCI over the past 12 years based on the Web of Science core collection using CiteSpace Software (6.
View Article and Find Full Text PDFPurpose: Magnetic iron oxide nanoparticle (MNP) drug delivery system is a novel promising therapeutic option for cancer treatment. Material issues such as fabrication and functionalized modification have been investigated; however, pharmacologic mechanisms of bare MNPs inside cancer cells remain obscure. This study aimed to explore a systems pharmacology approach to understand the reaction of the whole cell to MNPs and suggest drug selection in MNP delivery systems to exert synergetic or additive anti-cancer effects.
View Article and Find Full Text PDFInvasiveness and metastatic potential are among the most essential characteristics of malignant tumors. Furthermore, it has been reported that autophagy and invasion are enhanced when tumor cells are grown in adverse conditions, such as nutritional deficiency and starvation. However, the association between autophagy and invasion remains largely unclear.
View Article and Find Full Text PDFOvarian cancer has been nicknamed the "silent killer". Most patients with ovarian cancer are diagnosed at an advanced stage of the disease for the first time because of its insignificant early clinical symptoms. In addition to the difficulty of early screening and delay in diagnosis, the high recurrence rate and relapsed refractory status of patients with ovarian cancer are also important factors for their high mortality.
View Article and Find Full Text PDFMethods: In this study, we used MTT assays to demonstrate that a combination of SPIO-Serum and wild-type p53 overexpression can reduce ovarian cancer cell viability . Prussian blue staining and iron assays were used to determine changes in intracellular iron concentration following SPIO-Serum treatment. TEM was used to evaluate any mitochondrial damage induced by SPIO-Serum treatment, and Western blot was used to evaluate the expression of the iron transporter and lipid peroxidation regulator proteins.
View Article and Find Full Text PDFMitochondria play an important role in effective cell energy production and cell survival under stress conditions, such as treatment with chemotherapeutic drugs. Mitochondrial biogenesis is increased in ovarian cancer tissues, which is accompanied by alteration of mitochondrial energy metabolism, structure, and dynamics. These factors are involved in tumorigenesis and apoptosis resistance, highlighting the role of mitochondria in resisting cisplatin toxicity.
View Article and Find Full Text PDFThe Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has profound activity in chronic lymphocytic leukemia (CLL) but limited curative potential by itself. Residual signaling pathways that maintain survival of CLL cells might be targeted to improve ibrutinib's therapeutic activity, but the nature of these pathways is unclear. Ongoing activation of IFN receptors in patients on ibrutinib was suggested by the presence of type I and II IFN in blood together with the cycling behavior of IFN-stimulated gene (ISG) products when IFN signaling was blocked intermittently with the JAK inhibitor ruxolitinib.
View Article and Find Full Text PDFThe emergence of resistance to chemotherapy drugs in patients with ovarian cancer is still the main cause of low survival rates. The present study aimed to identify key genes that may provide treatment guidance to reduce the incidence of drug resistance in patients with ovarian cancer. Original data of chemotherapy sensitivity and chemoresistance of ovarian cancer were obtained from the Gene Expression Omnibus dataset GSE73935.
View Article and Find Full Text PDFThe phosphoinositide 3-kinase (PI3K) /AKT/mammalian target of rapamycin (mTOR) signaling pathway is frequently mutated in cancers, leading to increased cell proliferation, migration, and chemoresistance. Currently, a number of small molecule inhibitors of the PI3K/AKT/mTOR signaling pathway have been assessed in preclinical and clinical studies. It has been found that dual PI3K/mTOR inhibitors may inhibit cell proliferation and induce apoptosis in cancers, but the mechanism is still being explored.
View Article and Find Full Text PDFAims: Compared to normal cells, tumor cells maintain higher concentrations of reactive oxygen species (ROS) to support proliferation, invasion, and metastasis. Chemotherapeutic drugs often induce tumor cell apoptosis by increasing intracellular ROS concentrations to highly toxic levels. ABT737, which inhibits the apoptosis regulator B cell lymphoma 2 (Bcl2), increases the sensitivity of ovarian cancer cells to chemotherapeutic drugs by regulating the glucose metabolism, but the underlying mechanisms remain unclear.
View Article and Find Full Text PDFImbalance of redox homeostasis may be responsible for the resistance of cancer to chemotherapy. Currently, increasing studies demonstrated that vitamin K3 (VK3), which promoted the production of ROS, had potential to be developed as an anti-tumor agent. We found SKOV3/DDP cells with high levels of p62 were insensitive to VK3 compared with SKOV3 cells.
View Article and Find Full Text PDFBKCa is a large conductance calcium activated potassium channel ubiquitously expressed in various cell types. Accumulating evidence demonstrates that BKCa is aberrantly expressed in many malignancies, involving in cancerous behaviors such as cell proliferation and migration. In this study, we investigated the functional role of BKCa in endometrial cancer HEC-1-B cells.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a membranous network within cells that is important for several cellular functions including translation and folding of secretory and membrane proteins, lipid biogenesis and sequestration of Ca2+. Disruption of ER structure might affect the normal physiology of the cells. In yeast, expansion of the ER is observed under unfolded protein response (UPR) and subsequently induces autophagy initiated from the ER.
View Article and Find Full Text PDFThe function of calcium efflux from the endoplasmic reticulum (ER) in cisplatin-induced apoptosis is not fully understood in cancer cells. The present study used western blot analysis, flow cytometry, immunofluorescence and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay to investigate calcium signaling in human cervical cancer cells exposed to cisplatin. In the present study, treatment with cisplatin increased free Ca levels in the cytoplasm and mitochondria of human cervical cancer HeLa cells, which further triggers the mitochondria-mediated and ER stress-associated apoptosis pathways.
View Article and Find Full Text PDFS1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner.
View Article and Find Full Text PDFNuclear factor-κB (NF-κB) is constitutively activated in most malignant gliomas and is involved in cancer progression and drug resistance to chemotherapy. Sulfasalazine (SAS) is a classic inhibitor of NF-κB. Apoptosis and autophagy were induced by SAS accompanied by inhibition of NF-κB signaling in U251 cells.
View Article and Find Full Text PDFThe mechanisms underlying cisplatin resistance in tumors are not fully understood. Previous studies have reported that cellular resistance to oxidative stress is accompanied by resistance to cisplatin. However, the relationship between the resistance to oxidative stress and cisplatin drug resistance in human ovarian cancer cells (HOCCs) is not clear.
View Article and Find Full Text PDFTumor cells overexpress antiapoptotic proteins of the Bcl-2 (B-cell leukemia/lymphoma-2) family, which can lead to both escape from cell death and resistance to chemotherapeutic drugs. Recent studies suggest that the endoplasmic reticulum (ER) can produce proapoptotic signals, amplifying the apoptotic signaling cascade. The crosstalk between mitochondria and ER plays a decisive role in many cellular events but especially in cell death.
View Article and Find Full Text PDFPrevious studies have suggested that the novel BH3 mimetic S1 could induce apoptosis in diverse tumor cell lines through endoplasmic reticulum (ER) stress or mitochondrial cell death pathways. The activation of c-Jun N-terminal kinase (JNK) through inositol requiring enzyme-1 (IRE1) is closely connected to ER stress-induced apoptosis. However, the role of JNK is complex, as there are different JNK subtypes and the function of each subtype is still not entirely clear.
View Article and Find Full Text PDFIntroduction: Granulosa cell tumors (GCTs) are extremely rare tumors and are divided into 2 types: adult (AGCT) and juvenile (JGCT). The JGCTs represent only 5% of all cases. The incidence of ovarian carcinoma diagnosed during pregnancy varies about 0.
View Article and Find Full Text PDF