Publications by authors named "Meihua Ma"

A novel strategy based on imazethapyr (IM) molecular-imprinting polymers (MIPs) grafted onto the surface of chloromethylation polystyrene resin via surface-initiated atom transfer radical polymerization (SI-ATRP) for specific recognition and sensitive determination of trace imazethapyr in soil samples was developed. The SI-ATRP was performed by using methanol-water (4 : 1, v/v) as the solvent, acrylamide as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the cross-linker, imazethapyr as the template, and CuBr/2,2'-bipyridine as the catalyst. The resulting MIPs were characterized by elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

The synthesis of oxalate esters through a radical process, rather than the traditional ionic reaction, has been well developed in which the radicals induced by visible light are trapped by molecular oxygen and diazo compounds under room temperature. This reaction is operationally simple, mild, and shows broad substrate scopes in α-bromo ketones and diazo compounds.

View Article and Find Full Text PDF

The Cu-catalyzed three-component reaction between quinolines, diazo compounds, and alkenes has been established for direct construction of indolizine derivatives via quinolinium ylides. This methodology is distinguished by the use of a commercially inexpensive catalyst and readily available starting materials, wide substrate scope, and operational simplicity.

View Article and Find Full Text PDF

An unprecedented coupling reaction between aromatic amines and diazo compounds was well developed, which afforded a bridge connecting between radical chemistry and metal carbene chemistry. This Mn-catalyzed tandem reaction also provided a fundamentally different and practical approach to the indole skeleton under mild conditions.

View Article and Find Full Text PDF

A novel in situ generation of nitrilium from a nitrile ylide and the subsequent Mumm rearrangement of carboxylic acid, nitrile, and diazo compounds gave various unsymmetrical diacylglycine esters in moderate to high yields. This copper-catalyzed cascade reaction enables one-pot generation of two C-N bonds, one C[double bond, length as m-dash]O bond, and one C-H bond, with nitrogen as the only byproduct. The reaction has a broad functional-group tolerance, is rapid, easily scales up to the 100 mmol scale, and is insensitive to air and moisture.

View Article and Find Full Text PDF

A new cross-coupling reaction between sulfonyl hydrazides and diazo compounds has been established, leading to a variety of β-carbonyl sulfones in good yields. This methodology was distinguished by simple manipulation, easily available starting materials, and wide substrate scope. A plausible mechanism involving a radical process was proposed based upon the experimental observations and literature.

View Article and Find Full Text PDF

A novel Bu4NI-catalyzed pyrazole formation reaction is well described via sequential [3 + 2] cycloaddition and oxidative dehydrogenation reactions using TBHP as the primary oxidant. In comparison with previous cases toward pyrazoles from alkenes and diazo compounds, alkenes without a pre-organized leaving group were applied in this transformation. In addition, this methodology was distinguished by its broad substrate scope, commercially available inexpensive starting materials, high atom economy and operational simplicity.

View Article and Find Full Text PDF

Herein, a novel Cu-catalyzed four-component cascade reaction, which encompasses styrenes, diazo compounds, amines, and tert-butyl hydroperoxide (TBHP), was developed for the synthesis of β-ester-γ-amino ketones. Mechanistically, this transformation was initiated by the interception of an electrophilic Cu-based carbene with nucleophilic α-aminoalkyl radicals, followed by a radical cascade process and an ionic Kornblum-DeLaMare reaction. The methodology was also distinguished by its wide substrate scope, easily available starting materials, and operational simplicity.

View Article and Find Full Text PDF

The magnetic surface molecularly imprinted polymers (MIPs) with specific recognition of 4-methyl imidazole (4-MI) were prepared by using 4-MI as template molecule, methacrylic acid (MAA) as functional monomer and Fe3O4 as magnetic fluid. The polymers were characterized by of Fourier transform infrared spectrometer (FT-IR) analysis, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results demonstrated that an imprinted polymer layer was successfully coated onto the surface of modified Fe3O4 nanomaterials, resulting in a narrow diameter distribution and good magnetic responsibility.

View Article and Find Full Text PDF

A novel 17β-estradiol molecularly imprinted polymer was grafted onto the surface of initiator-immobilized silica by surface-initiated atom transfer radical polymerization. The resulting molecularly imprinted polymer was characterized by elemental analysis and thermogravimetric analysis. The binding property of molecularly imprinted polymer for 17β-estradiol was also studied with both static and dynamic methods.

View Article and Find Full Text PDF

The interaction mechanism of prulifloxacin (PL) and calf thymus DNA (ct-DNA) was studied by UV spectra, fluorescence spectra, and hydrodynamic measurements. The binding of ct-DNA and different concentrations of PL was discussed with UV, FL, phosphate effect and ion strength. The denaturation temperature and viscosity were measured.

View Article and Find Full Text PDF