Publications by authors named "Meihua Han"

Compared to conventional polymer-based and biomaterial carriers, cells as vehicles for delivering bioactive molecules in the treatment of tumor diseases offer characteristics such as non-toxicity, biocompatibility, low immunogenicity, and prolonged in vivo circulation. However, the focus of current cell drug delivery systems predominantly lies on live cells, such as red blood cells, white blood cells and others. Here, a drug delivery strategy targeting liver cancer utilizing cryo-shocked liver cancer cells (HepG2) as carriers was presented, and non-proliferative HepG2 cells particles loaded with DOX (HepG2-DOX) was effectively prepared, which has good homologous targeting.

View Article and Find Full Text PDF

The development of new effective drugs to treat breast cancer remains a huge challenge. ABT-737 can inhibit Bcl-2 proteins to promote apoptosis. Resiquimod (R848) is a TLR7/8 agonist that is effective in modulating the immunosuppressive microenvironment.

View Article and Find Full Text PDF

Background: Breast cancer is a heterogeneous disease globally accounting for approximately 1 million new cases annually. Chemotherapy remains the main therapeutic option, but the antitumor efficacy needs to be improved.

Methods: Two multifunctional nanoparticles were developed in this paper using oleic acid and mPEG-PCL as the drug carriers.

View Article and Find Full Text PDF

Until now, there has been a lack of effective strategies for cancer treatment. Immunotherapy has high potential in treating several cancers but its efficacy is limited as a monotherapy. Chemoimmunotherapy (CIT) holds promise to be widely used in cancer treatment.

View Article and Find Full Text PDF

Quercetin, as a representative flavonoid, is widely present in daily diet and has been developed as a dietary supplement due to its beneficial physiological activities. However, the application of quercetin is limited due to its poor water solubility and extensive metabolism. So far, the nano-drug delivery systems designed to improve its bioavailability generally have the shortcomings of low drug loading content and difficulty in industrial production.

View Article and Find Full Text PDF

Ochratoxins are the secondary metabolites of and , among which ochratoxin A (OTA) is the most toxic molecule. OTA is widely found in food and agricultural products. Due to its severe nephrotoxicity, immunotoxicity, neurotoxicity, and teratogenic mutagenesis, it is essential to develop effective, economical, and environmentally friendly methods for OTA decontamination and detoxification.

View Article and Find Full Text PDF

Neutral/negatively charged nanoparticles are beneficial to reduce plasma protein adsorption and prolong their blood circulation time, while positively charged nanoparticles easily transverse the blood vessel endothelium into a tumor and easily penetrate the depth of the tumor via transcytosis. Γ-Glutamyl transpeptidase (GGT) is overexpressed on the external surface of endothelial cells of tumor blood vessels and metabolically active tumor cells. Nanocarriers modified by molecules containing γ-glutamyl moieties (such as glutathione, G-SH) can maintain a neutral/negative charge in the blood, as well as can be easily hydrolyzed by the GGT enzymes to expose the cationic surface at the tumor site, thus achieving good tumor accumulation via charge reversal.

View Article and Find Full Text PDF

Ginsenosides are the major and key components for ginseng to exert its wide and beneficial therapeutic efficacy in clinic. Meanwhile, many ginsenosides and their metabolites showed in vitro an in vivo anti-tumor activity, among which ginsenoside Rb1 has attracted much attention due to its good solubility and amphipathy. In this study, the self-assembly behavior of Rb1 was investigated and the Rb1 nano-assembly could further stabilize or encapsulated hydrophobic drugs such as protopanaxadiol (PPD) and paclitaxel (PTX) to form nanoparticles, based on which, a natural nanoscale drug delivery system, ginsenoside Rb1 stabilized and PTX/PPD co-loaded nanoparticles (GPP NPs) were prepared.

View Article and Find Full Text PDF

Drug delivery systems require that carrier materials have good biocompatibility, degradability, and constructability. Poly(amino acids), a substance with a distinctive secondary structure, not only have the basic features of the carrier materials but also have several reactive functional groups in the side chain, which can be employed as drug carriers to deliver anticancer drugs. The conformation of isomers of drug carriers has some influence on the preparation, morphology, and efficacy of nanoparticles.

View Article and Find Full Text PDF

Mitochondria are involved in various stages of cancer cell diffusion and metastasis. Therefore, targeting tumor mitochondria with antineoplastic medicines to cause mitochondria to initiate apoptosis may be an effective strategy for cancer therapy. Here, in order to enhance the anti-tumor efficacy of the antineoplastic agent hydroxycamptothecin (HCPT), the mitochondrial targeting ligand 4-(carboxybutyl) triphenylphosphine bromide (TPP) was attached to HCPT by an ester linkage.

View Article and Find Full Text PDF

The therapeutic efficacy of nanoscale drug delivery systems is related to particle size, zeta potential, morphology, and other physicochemical properties. The structure and composition of nanocarriers may affect their physicochemical properties. To systematically evaluate these characteristics, three analogues, namely polyethylene glycol (PEG), PEG-conjugated octadecylamine (PEG-C18), and tri(ethylene glycol) (TEG), were explored as nanocarriers to entrap celastrol (CSL) via the injection-combined dialysis method.

View Article and Find Full Text PDF

Oligoethylene glycol dendron (G2) has been used in drug delivery due to its unique dendritic structure and excellent properties. In order to investigate the effects of lipophilic chains on drug delivery, the amphiphilic hybrid compound G2-C18 is synthesized, and celastrol (CSL) is selected to prepare "core-shell" structured CSL-G2-C18 nanoparticles (NPs) via the antisolvent precipitation method. Meanwhile, CSL-G2 NPs are prepared as the control.

View Article and Find Full Text PDF

In order to improve the efficacy of doxorubicin in the treatment of breast cancer, we constructed a drug delivery system combined with local administration of Lycium barbarum polysaccharides (LBP) and photothermal-material polypyrrole nanoparticles (PPY NPs). In vitro cytotoxicity experiments showed that the inhibitory effect of DOX + LBP + PPY NPs on 4T1 cells under NIR (near infrared) laser was eight times that of DOX at the same concentration (64% vs. 8%).

View Article and Find Full Text PDF

Polypeptide materials have clear secondary structure and biodegradability, which can be further modified and functionalized, so that they can be employed as therapeutic agents in clinical applications. PEGylation of polylysine (PEG-PLL) is a kind of safe and effective nanocarrier that is utilized for gene and drug delivery. However, PEG-PLL needs to be produced through chemical synthesis, which is expensive and difficult to obtain.

View Article and Find Full Text PDF

Owing to its pH-sensitive property and chelating Cu effect, poly(methacrylate citric acid) (PCA) can be utilized as a dual functional nanocarrier to construct a nanodelivery system. Negatively charged carboxyl groups can interact with positively charged antineoplastic drugs through electrostatic interaction to form stable drug nanoparticles (NPs). Through drug experimental screening, doxorubicin (DOX) was selected as the model drug, PCA/DOX NPs with a diameter of 84 nm were prepared, and the drug-loading content was 68.

View Article and Find Full Text PDF

Oleic acid (OA) is a kind of monounsaturated omega-3 fatty acid that abounds in plants and animals which can induce apoptosis and has broad-spectrum inhibitory activity against a variety of tumor cell lines. However, OA is quite insoluble and thus inconvenient to be efficiently delivered in vivo. In this work, OA was fabricated into nanoparticles to generate OA elastic nanoparticles (OA-ENPs) with a particle size of 185.

View Article and Find Full Text PDF

Cannabidiol (CBD), a nonpsychoactive major component derived from , widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, especially tumor cachexia, thus it is very promising as an anti-tumor drug with unique advantages. 20(S)-Protopanaxadiol (PPD) derived from the best-known tonic Chinese herbal medicine Ginseng was designed to be co-loaded with CBD into liposomes to examine their synergistic tumor-inhibitory effect.

View Article and Find Full Text PDF

Annona squamosa seed oil (ASSO), which is a waste product in the extraction of annonaceous acetogenins (ACGs), displays good antitumor activity against a variety of tumor cells. However, ASSO is insoluble and has low bioavailability. In order to improve the solubility and application value of ASSO, the seed oil nanoparticles (ASSO-NPs) were successfully prepared only using TPGS as a stabilizer.

View Article and Find Full Text PDF

Naringenin (NRG) is a natural compound with several biological activities; however, its bioavailability is limited owing to poor aqueous solubility. In this study, NRG nanoparticles (NPs) were prepared using the wet media milling method. To obtain NRG NPs with a small particle size and high drug-loading content, the preparation conditions, including stirring time, temperature, stirring speed, and milling media amount, were optimized.

View Article and Find Full Text PDF

Poly(amino acids) have advanced characteristics, including unique secondary structure, enzyme degradability, good biocompatibility, and stimuli responsibility, and are suitable as drug delivery nanocarriers for tumor therapy. The isoform structure of poly(amino acids) plays an important role in their antitumor efficacy and should be researched in detail. In this study, two kinds of pH-sensitive isoforms, including α-poly(glutamic acid) (α-PGA) and γ-PGA, were selected and used as nanocarriers to prepare a nanodrug delivery system.

View Article and Find Full Text PDF

Background: Most intravenously administered drug-loaded nanoparticles are taken up by liver Kupffer cells, and only a small portion can accumulate at the tumor, resulting in an unsatisfactory therapeutic efficacy and side effects for chemotherapeutic agents. Tumor-targeted drug delivery proves to be the best way to solve this problem; however, the complex synthesis, or surface modification process, together with the astonishing high cost make its clinical translation nearly impossible.

Methods: Referring to Ouyang's work and over-threshold dosing theory in general, blank PEGylated liposomes (PEG-Lipo) were prepared and used as tumor delivery enhancers to determine whether they could significantly enhance the tumor accumulation and in vivo antitumor efficacy of co-injected liposomal ACGs (PEG-ACGs-Lipo), a naturally resourced chemotherapeutic.

View Article and Find Full Text PDF

ACGs (annonaceous acetogenins) possess excellent antitumor activity, but their serious accompanying toxicity has prevented their application in the clinic. To address this problem, we therefore constructed an intratumoral drug delivery system integrating chemotherapy and photothermal therapy. The PEGylation of polydopamine nanoparticles (PDA-PEG NPs) possessed an excellent biocompatibility with size of 70.

View Article and Find Full Text PDF

Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method.

View Article and Find Full Text PDF

Annonaceous acetogenins (ACGs) have attracted much attention because of excellent antitumor activity. However, the lack of selectivity and the accompanying serious toxicity have eventually prevented ACGs from entering clinical application. To decrease the side effects of ACGs, the cytotoxicity of ACGs on 10 types of tumor cell lines was investigated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test to identify one that was very sensitive to ACGs.

View Article and Find Full Text PDF

: The use of chemotherapeutic drugs is restricted in the tumor-therapy because of the severely toxic and side effects among most important factors. The active herbal extracts are always used as a high dose while in the tumortherapy to achieve good anti-tumor effects. Hydrous icaritin has a high activity while there are few existing dosage forms as a result of low solubility in water and poor bioavailability.

View Article and Find Full Text PDF