The UL32 gene of human cytomegalovirus (CMV) encodes a prominent betaherpesvirus-conserved virion tegument protein, called pp150 (basic phosphoprotein/ppUL32), that accumulates within a cytoplasmic inclusion adjacent to the nucleus at late times during infection. Using a UL32 deletion mutant (DeltaUL32-BAC) (where BAC is bacterial artificial chromosome), we demonstrate that pp150 is critical for virion maturation in the cytoplasmic compartment. Cotransfection of a pp150 expression plasmid with DeltaUL32-BAC DNA led to complementation of the replication defect with focus formation due to secondary spread.
View Article and Find Full Text PDFHuman cytomegalovirus carries a mitochondria-localized inhibitor of apoptosis (vMIA) that is conserved in primate cytomegaloviruses. We find that inactivating mutations within UL37x1, which encodes vMIA, do not substantially affect replication in TownevarATCC (Towne-BAC), a virus that carries a functional copy of the betaherpesvirus-conserved viral inhibitor of caspase 8 activation, the UL36 gene product. In Towne-BAC infection, vMIA reduces susceptibility of infected cells to intrinsic death induced by proteasome inhibition.
View Article and Find Full Text PDFTake-home dosages in maintenance treatment are of great therapeutic importance, but they include the risk of the substitute being distributed illegally. We reviewed the extent of consumption of illegally acquired medical opiates by 142 opiate- or poly-addicted patients consecutively admitted to a detoxification ward. 76 (53.
View Article and Find Full Text PDFStandard microarrays measure mRNA abundance, not mRNA synthesis, and therefore cannot identify the mechanisms that regulate gene expression. We have developed a method to overcome this limitation by using the salvage enzyme uracil phosphoribosyltransferase (UPRT) from the protozoan Toxoplasma gondii. T.
View Article and Find Full Text PDFSpumaviruses, commonly called foamy viruses, are complex retroviruses that establish life-long persistent infections in the absence of accompanying pathology. Depending upon cell type, infection of cells in tissue culture cells can result in either lytic replication, persistence, or latency. The cellular factors that mediate foamy virus (FV) latency are poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2002
Spumaviruses, commonly called foamy viruses (FV), are complex retroviruses that establish lifelong persistent infections without any accompanying pathologies. In tissue culture, cells can be either lytically or latently infected, depending on cell type. Regulation of FV replication is controlled by two promoters: the LTR and a second promoter within the env gene termed the internal promoter (IP).
View Article and Find Full Text PDFThe retroviral vector systems that are in common use for gene therapy are designed to infect cells expressing either of two widely expressed phosphate transporter proteins, Pit1 or Pit2. Subgroup B feline leukemia viruses (FeLV-Bs) use the gibbon ape leukemia virus receptor, Pit1, as a receptor for entry. Our previous studies showed that some chimeric envelope proteins encoding portions of FeLV-B could also enter cells by using a related receptor protein, Pit2, which serves as the amphotropic murine leukemia virus receptor (S.
View Article and Find Full Text PDFThe foamy virus (FV) genome contains two promoters, the canonical long terminal repeat (LTR) promoter, containing three consensus AP-1 binding sites, and an internal promoter (IP) within the env gene. We investigated the regulation of the two promoters in lytic and persistent infections and found that in the presence of a constitutive source of the viral transactivator protein Tas, transactivation of the LTR promoter and that of the IP differ. In lytic infections, both the LTR promoter and the IP are efficiently transactivated by Tas, while in persistent infections, the IP is efficiently transactivated by Tas, but the LTR promoter is not.
View Article and Find Full Text PDFFoamy viruses (FV) are complex retroviruses which are widespread in many species. Despite being discovered over 40 years ago, FV are among the least well characterized retroviruses. The replication of these viruses is different in many interesting respects from that of all other retroviruses.
View Article and Find Full Text PDFFoamy viruses are complex retroviruses whose replication strategy resembles that of conventional retroviruses. However, foamy virus replication also resembles that of hepadnaviruses in many respects. Because hepadnaviruses replicate in an integrase-independent manner, we were interested in investigating the characteristics of human foamy virus (HFV) integration.
View Article and Find Full Text PDF