Biomachining is an eco-friendly metal processing method with broad application potential. Nevertheless, the bacterial culture methods that are currently involved in biomachining require the intensive use of chemical reagents, especially FeSO, specialized equipment, and professional-level skills in the field of biology. Herein, the differences between two cultures with and without sterilization were evaluated.
View Article and Find Full Text PDFIn this study, an ultrasensitive unlabeled electrochemical immunosensor for the detection of cardiac troponin I (cTnI) was developed based on Pt/Au modified B,S,N co-doped reduced graphene oxide (Pt/Au-B,S,N-rGO) as a signal amplification platform. First-principles calculations were employed to analyze the electron density of states of Pt/Au-B,S,N-rGO, revealing an increase in the electron density of the graphene oxide (GO) states. Furthermore, scanning electron microscopy (SEM), X-ray photoelectron diffraction spectroscopy (XPS), and electrochemical detection were used to successfully construct and analyze Pt/Au-B,S,N-rGO.
View Article and Find Full Text PDFThe sensitive and rapid detection of Ochratoxin A in foods is particularly urgent for ensuring human security due to its larger toxicity to the body. Herein, a novel competitive fluorescence colorimetric dual-mode immunosensor for detecting Ochratoxin A based on AuAg NCs-SPCN nanocomposite was designed and constructed. The synergistic effect of SPCN and AuAg NCs dramatically improved the nanozyme activity.
View Article and Find Full Text PDFA competitive fluorescent immunoassay is described for the ultrasensitive determination of amyloid beta peptide1-42 (Aβ1-42), a biomarker for early diagnosis of Alzheimer's disease. N, S-doped graphene quantum dots (N, S-GQDs) were freely assembled on the surface of Ag@SiO nanoparticles to obtain a composite (Ag@SiO@N, S-GQD nanocomposite), which was successfully prepared and characterized. By theoretical study, the optical properties of nanocomposites are improved compared with GQDs, due to the advantages of combining N, S co-doping and metal-enhanced fluorescence (MEF) effect of Ag NPs.
View Article and Find Full Text PDFA label-free electrochemical immunosensor for high-sensitive detection of β-amyloid 1-42 (Aβ 1-42) was constructed based on Au-modified B, S, and N co-doped reduced graphene oxide (Au-BSN-rGO). The electronic structure of Au-BSN-rGO was investigated by first-principles calculations, which showed that the band gap of graphene was opened, thus improving its electrical conductivity. Moreover, Au-BSN-rGO was successfully prepared and characterized, and the obtained results discovered that it could be used as a signal amplifier for immunosensors due to the advantages of the good electrochemical characteristics and enormous surface area of BSN-rGO and the accelerated electron transfer ability of Au NPs.
View Article and Find Full Text PDFA sensitive unlabeled ratiometric biosensor was developed to the detection of cardiac troponin I (cTnI). This biosensor was established by using the glassy carbon electrode coated with graphene oxide to form a platform bonded with N, Zn co-doped graphene quantum dots (N, Zn-GQDs). The N, Zn-GQDs was successfully prepared as the raw materials of graphite powder and characterized.
View Article and Find Full Text PDF