Unlabelled: Our aim was to construct and characterize (111)In-nuclear translocation sequence (NLS)-7G3, an Auger electron-emitting radioimmunotherapeutic agent that preferentially recognizes the expression of CD123 (interleukin-3 receptor [IL-3R] α-subchain) in the absence of CD131 (IL-3R β-subchain) displayed by leukemia stem cells.
Methods: Monoclonal antibody 7G3 was modified with 13-mer peptides [CGYGPKKKRKVGG] harboring the NLS of SV-40 large T-antigen and with diethylenetriaminepentaacetic acid for labeling with (111)In. Immunoreactivity was evaluated in a competition radioligand binding assay and by flow cytometry.
Intracellular compartments, in particular the cytoplasm or nucleus, have generally been poorly accessible or inaccessible to radiolabeled biomolecules (e.g., monoclonal antibodies [mAbs], peptides, or oligonucleotides [ODNs]).
View Article and Find Full Text PDFIntroduction: Our objective was to evaluate the effect of epidermal growth factor receptor(s) (EGFR) density on the importation and nuclear localization of 111In-labeled diethylenetriaminepentaacetic acid human epidermal growth factor ([111In]DTPA-hEGF) in breast cancer (BC) cells in vitro and in tumor xenografts and normal tissues in vivo in athymic mice, as well as on its cytotoxicity and tumor and normal-tissue distribution.
Methods: The internalization and nuclear importation of [111In]DTPA-hEGF were measured in MCF-7, MDA-MB-231, BT-474 and MDA-MB-468 BC cells (10(4), 2 x 10(5), 6 x 10(5) and 10(6) EGFR/cell, respectively). The molecular size (Mr) distribution and immunoreactivity of nuclear radioactivity were characterized.
The overexpression of epidermal growth factor receptor (EGFR) in human epithelial cancers has been associated with aggressive disease, poor patient prognosis, and a high incidence of metastases. In the present study, block copolymer micelles are conjugated with epidermal growth factor (EGF), which acts as both a targeting ligand for the drug carrier and an apoptotic factor against EGFR-overexpressing cancers. Drug-free EGF-conjugated micelles are shown to result in cell-cycle arrest at the G 1 phase and subsequent induction of cell-type-specific apoptosis in EGFR-overexpressing breast cancer cells as demonstrated by flow cytometric analysis.
View Article and Find Full Text PDFIntroduction: Our objective was to compare the cell penetration and nuclear importation properties of 111In-labeled and 123I-labeled immunoconjugates (ICs) composed of 16-mer peptides (GRKKRRQRRRPPQGYG) derived from HIV-1 transactivator of transcription (tat) protein and anti-mouse IgG (mIgG) in BT-474 breast cancer (BC) cells.
Methods: [111In]tat ICs were constructed by site-specific conjugation of tat peptides to NaIO4(-)-oxidized carbohydrates in the Fc domain of diethylenetriaminepentaacetic-acid-modified anti-mIgG antibodies. Immunoreactivity against mIgG was assessed in a competition assay.
Purpose: To evaluate the internalization and nuclear translocation of (123)I-tat-peptide radioimmunoconjugates in MDA-MB-468 breast cancer cells and their ability to interact with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1).
Methods: Peptides [GRKKRRQRRRPPQGYGC] harboring the nuclear-localizing sequence from HIV tat domain were conjugated to anti-p21(WAF-1/Cip-1) antibodies. Immunoreactivity was assessed by Western blot using lysate from MDA-MB-468 cells exposed to EGF to induce p21(WAF-1/Cip-1).
In this study, we evaluated the ability of anti-p21 antibodies conjugated to 17-mer peptides [GRKKRRQRRRPPQGYGC] harboring the membrane-translocating and nuclear import sequences [underlined] of HIV-1 tat protein to inhibit the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1) (p21) and differentially sensitize MDA-MB-468 and MCF-7 human breast cancer (BC) cells to the antiproliferative effects of treatments that induce or do not induce p21. BC cells were treated with increasing concentrations of epidermal growth factor (EGF; 0.5-10 nM), the topoisomerase I inhibitor, camptothecin (CPT; 0.
View Article and Find Full Text PDFPurpose: Our objective was to study the cellular and nuclear uptake of (123)I-mouse IgG ((123)I-mIgG) linked to peptides [GRKKRRQRRRPPQGYGC] harbouring the membrane-translocating and nuclear import sequences of HIV-1 tat protein.
Methods: Carbohydrates on mIgG were oxidized by NaIO(4), then reacted with a 40-fold excess of peptides. Displacement of binding of anti-mouse IgG (Fab specific; alpha-mFab) to (123)I-mIgG by tat-mIgG or mIgG was compared.
Molecular imaging of the expression of key genes which determine the response to DNA damage following cancer treatment may predict the effectiveness of a particular treatment strategy. A prominent early response gene for DNA damage is the gene encoding p21(WAF-1/CIP-1), a cyclin-dependent kinase inhibitor that regulates progression through the cell cycle. In this study, we explored the feasibility of imaging p21(WAF-1/CIP-1) gene expression at the mRNA level using an 18-mer phosphorothioated antisense oligodeoxynucleotide (ODN) labeled with (111)In.
View Article and Find Full Text PDF