Publications by authors named "Meidi Li"

Swine influenza viruses (SIVs), including H1N1, H1N2, and H3N2, have spread throughout the global pig population. Potential pandemics are a concern with the recent sporadic cross-species transmission of SIVs to humans. We collected 1421 samples from Guangdong, Fujian, Henan, Yunnan and Jiangxi provinces during 2017-2018 and isolated 29 viruses.

View Article and Find Full Text PDF

RNA N6-melthyladenosine (m6A) can play an important role in regulation of various biological processes. Chicken ovary development is closely related to egg laying performance, which is a process primarily controlled by complex gene regulations. In this study, transcriptome-wide m6A methylation of the Wuhua yellow-feathered chicken ovaries before and after sexual maturation was profiled to identify the potential molecular mechanisms underlying chicken ovary development.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) can be isolated from numerous tissues and have the potential for self-renewal and multidirectional differentiation. Evidence is accumulating which suggests that MSCs are also present in the gingival tissue. This study aimed to evaluate the feasibility of collecting, purifying, and amplifying gingival-derived MSCs (GMSCs) from canine gingiva and to obtain GMSC-derived exosomes (GMSC-exo).

View Article and Find Full Text PDF

Swine influenza (SI) is widely prevalent in pig herds worldwide, causing huge economic losses to the pig industry and public health risks. The traditional inactivated swine influenza virus (SIV) vaccines are produced in chicken embryos, and egg-adaptive substitutions that occur during production process can impact vaccine effectiveness. Thus, developing an SI vaccine that can decrease the dependence on chicken embryos with a high immunogenicity is urgently needed.

View Article and Find Full Text PDF

Eurasian avian-like (EA) H1N1 swine influenza viruses (SIVs) are currently the most prevalent SIVs in Chinese swine populations, but recent human-like H3N2 SIV subtypes have also been frequently isolated. Hence, there is an urgent need to develop an effective vaccine against both EA H1N1 and recent human-like H3N2 infections. In this study, we utilized the baculovirus expression system to produce virus-like particles (VLPs) containing hemagglutinin protein (HA) and matrix protein (M1) based on A/Swine/Guangdong/YJ4/2014 (H1N1) and A/swine/Guangdong/L22/2010 (H3N2).

View Article and Find Full Text PDF

CO absorption hybrid with microalgae conversion (CAMC) could be a promising alternative for the conventional CO capture technologies. The hybrid process could avoid the challenges of thermal energy consumption in the conventional desorption process and nutrition consumption in the typical algae cultivation process. In this work, the influence of different nitrogen ratio (NHHCO:NaNO) on the performance of the proposed hybrid CAMC process was investigated.

View Article and Find Full Text PDF

High-salinity wastewater is often difficult to treat by common biological technologies due to salinity stress on the bacterial community. Electricity-assisted anaerobic technologies have significantly enhanced the treatment performance by alleviating the impact of salinity stress on the bacterial community, but electricity-assisted aerobic technologies have less been reported. Herein, a novel bio-electrochemistry system has been designed and operated in which a pair of stainless iron mesh-graphite plate electrodes were installed into a sequencing batch reactor (SBR, designated as S1) to strengthen the performance of saline petrochemical wastewater under aerobic conditions.

View Article and Find Full Text PDF

In this study, the pyridine and quinoline could be cometabolically degraded by phenol-cultivated Comamonas sp. strain JB(strain JB). The integration of magnetically immobilized cells of JB and an E-Fenton process into one entity has been designed to prepare a novel integration system to improve the treatment efficiency of phenol, pyridine, and quinoline in coking wastewater.

View Article and Find Full Text PDF

A novel EMBR (electric field applied in MBR) by placing stainless steel mesh cathode inside a flat membrane module and stainless steel mesh anode outside the module was built and operated to enhance the treatment performance of coking wastewater containing phenol, pyridine and quinoline and reduce the membrane fouling. The degradation rates of COD, phenol, pyridine and quinoline in EMBR with electric field (reactor A) were significantly higher than the sum of EMBR without electric field (reactor B) and only electro-catalytic degradation during the long-term treatment, confirming that a coupling effect was existed between biodegradation and electro-catalytic degradation process. Illumina sequencing data revealed that bacterial community was richer and more diverse in reactor A.

View Article and Find Full Text PDF

A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off.

View Article and Find Full Text PDF