Publications by authors named "Meidan Kuang"

Right heart failure is the leading cause of death in pulmonary hypertension (PH), and echocardiography is a commonly used tool for evaluating the risk hierarchy of PH. However, few studies have explored the dynamic changes in the structural and functional changes of the right heart during the process of PH. Previous studies have found that pulmonary circulation coupling right ventricular adaptation depends on the degree of pressure overload and other factors.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is responsible for premature death caused by progressive and severe heart failure. A simple, feasible, and reproducible animal model of PH is essential for the investigation of the pathogenesis and treatment of this condition. Previous studies have demonstrated that the vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitor SU5416 combined with hypoxia could establish an animal model of PH.

View Article and Find Full Text PDF

Background And Purpose: Tetramethylpyrazine (TMP) was originally isolated from the traditional Chinese herb ligusticum and the fermented Japanese food natto and has since been synthesized. TMP has a long history of beneficial effects in the treatment of many cardiovascular diseases. Here we have evaluated the therapeutic effects of TMP on pulmonary hypertension (PH) in animal models and in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH).

View Article and Find Full Text PDF

Unlike the pulmonary artery (PA), the pathophysiological changes of the pulmonary vein (PV) in the development of pulmonary hypertension (PH) remain largely unknown. In this study, we comprehensively investigated the structural and functional changes in the PV isolated from the chronic hypoxia (CH; 10% O, 21 days)-induced PH rat model (CHPH). Results showed that CH caused an increase in right ventricular pressure but did not affect the mean pulmonary venous pressure and the left atrial pressure.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? In this study, by using motor vehicle exhaust (MVE) exposure with or without lipopolysaccharide (LPS) instillation, we established, evaluated and compared MVE, LPS and MVE+LPS treatment-induced chronic obstructive pulmonary disease (COPD) models in mice. What is the main finding and its importance? Our study demonstrated that the combination of chronic exposure to MVE with early LPS instillation can establish a mouse model with some features of COPD, which will allow researchers to investigate the underlying molecular mechanisms linking air pollution and COPD pathogenesis.

Abstract: Although it is well established that motor vehicle exhaust (MVE) has a close association with the occurrence and exacerbation of chronic obstructive pulmonary disease (COPD), very little is known about the combined effects of MVE and intermittent or chronic subclinical inflammation on COPD pathogenesis.

View Article and Find Full Text PDF

Animal model of cigarette smoke (CS) -induced chronic obstructive pulmonary disease (COPD) is the primary testing methodology for drug therapies and studies on pathogenic mechanisms of disease. However, researchers have rarely run simultaneous or side-by-side tests of whole-body and nose-only CS exposure in building their mouse models of COPD. We compared and evaluated these two different methods of CS exposure, plus airway Lipopolysaccharides (LPS) inhalation, in building our COPD mouse model.

View Article and Find Full Text PDF