Publications by authors named "Meibing Liu"

Revealing changes in actual evapotranspiration is essential to understanding regional extreme hydrological events (e.g., droughts).

View Article and Find Full Text PDF

Water scarcity has become a global severe challenge over the past few decades. Quantifying the impact of climate variability and land use on water resource availability is crucial for integrated water resource management. Many studies have focused on blue water but ignored green water which is important in the terrestrial ecosystem, especially on different temporal scales.

View Article and Find Full Text PDF

Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively.

View Article and Find Full Text PDF

A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model.

View Article and Find Full Text PDF