Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments.
View Article and Find Full Text PDFThis paper presents a study of the effect of a combined biostimulation-bioaugmentation treatment applied to a clay-loam soil contaminated with 16,300 mg/kg of total petroleum hydrocarbons (TPH), which comprised 51% saturated hydrocarbons and 31% aromatic hydrocarbons. The bioaugmentation was performed with yeast Candida tropicalis SK21 isolated from petroleum-contaminated soil. The strain was able to grow in a pH range of 3-9 in liquid culture, and the optimum pH was found to be 6 for both growth and biosurfactant production.
View Article and Find Full Text PDF