FK228 is a potent natural pan HDAC inhibitor approved by the FDA for the treatment of cutaneous T-cell lymphoma as well as peripheral T-cell lymphoma. It is generally believed that the mechanism of FK228 acting on HDACs is by reducing its disulfide bond after entering the cell, and the dithiol group may chelate with Zn and form a weak reversible covalent bond with cysteine in the catalytic pocket of HDACs, therefore inhibiting the activity of HDACs. However, due to the weak stability of the disulfide bond in FK228, it has been difficult to obtain direct evidence for the above conjecture.
View Article and Find Full Text PDFHistone lysine crotonylation (Kcr) is one newly discovered acylation modification and regulates numerous pathophysiological processes. The binding affinity between Kcr and its interacting proteins is generally weak, which makes it difficult to effectively identify Kcr-interacting partners. Changing the amide of crotonyl to an ester increased reactivity with proximal cysteines and retained specificity for Kcr antibody.
View Article and Find Full Text PDFDisulfide-rich architectures are valuable pharmacological tools or therapeutics. Besides, a ligand-induced conjugate strategy offers potential advantages in potency, selectivity, and duration of action for novel covalent drugs. Combining the plentiful disulfide-rich architecture library and ligand-induced conjugate via thiol-disulfide interchange would supply great benefits for developing site specific covalent inhibitors.
View Article and Find Full Text PDFPolo-like kinase 1 (Plk1) is a validated target for the treatment of cancer. In this report, by analyzing amino acid residue differences among the ATP-binding pockets of Plk1, Plk2 and Plk3, novel selective Plk1 inhibitors were designed based on BI 2536 and BI 6727, two Plk1 inhibitors in clinical studies for cancer treatments. The Plk1 inhibitors reported herein have more potent inhibition against Plk1 and better isoform selectivity in the Plk family than these two lead compounds.
View Article and Find Full Text PDFParkinson's disease (PD) is associated with elevated levels of hMAO-B in the brain, and MAO-B has been recognized a successful target for developing anti-PD drugs. Herein we report rasagiline derivatives as novel potent and selective hMAO-B inhibitors. They were designed by employing fragment-based drug design strategy to link rasagiline and hydrophobic fragments, which may target a hydrophobic pocket in the entrance cavity of hMAO-B.
View Article and Find Full Text PDFPolo-like kinase 2 (Plk2) is a potential target for the treatment of cancer, which displays an important role in tumor cell proliferation and survival. In this report, according to the analysis of critical amino acid residue differences among Plk1, Plk2 and Plk3, and structure-based drug design strategies, two novel series of selective Plk2 inhibitors based on tetrahydropteridin chemical scaffold were designed and synthesized to target two specific residues, Lys86 and Tyr161 of Plk2. All compounds were evaluated for their inhibitory activity against Plk1-Plk3 and the cellular inhibition activity on six different human cancer cell lines.
View Article and Find Full Text PDFCancer immunotherapy has made an extraordinary journey from bench to bedside. Blocking the interactions between programmed cell death protein 1 (PD-1) and its ligand, PD-L1, has emerged as a promising immunotherapy for treating cancer. Here, we review the development of drugs targeting the PD-1/PD-L1 pathway.
View Article and Find Full Text PDF