Publications by authors named "Mei-Lin Go"

Immunomodulatory imide drugs (IMiDs) degrade specific C2H2 zinc finger degrons in transcription factors, making them effective against certain cancers. SALL4, a cancer driver, contains seven C2H2 zinc fingers in four clusters, including an IMiD degron in zinc finger cluster two (ZFC2). Surprisingly, IMiDs do not inhibit growth of SALL4 expressing cancer cells.

View Article and Find Full Text PDF

Introduction: Novel antibiotics are needed to keep antibiotic resistance at bay and to improve treatment of the many drug-susceptible infections for which current therapies achieve poor cure rates. While revolutionizing human therapeutics, the concept of targeted protein degradation (TPD) by bifunctional proteolysis targeting chimeras (PROTACs) has not yet been applied to the discovery of antibiotics. A major obstacle precluding successful translation of this strategy to antibiotic development is that bacteria lack the E3 ligase-proteasome system exploited by human PROTACs to facilitate target degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Mycobacterial bioenergetics is a promising target for new anti-tuberculosis drugs due to its importance in energy generation and bacteria survival.
  • The study involved modifying naphthoquinoneimidazoles by adding a trialkylphosphonium cation to enhance their antimycobacterial activity through changes in the structure.
  • The most effective compound showed a strong selectivity index and bactericidal action by causing rapid depolarization of bacterial membranes, leading to decreased ATP levels and maintaining excellent antibacterial properties.
View Article and Find Full Text PDF

The dioxonaphthoimidazolium scaffold is a novel, highly bactericidal redox cycling antituberculosis chemotype that is reliant on the respiratory enzyme Type II NADH dehydrogenase (NDH2) for the generation of reactive oxygen species (ROS). Here, we employed Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) reporter strains to show that ROS generated by the redox cycler SA23 simulated an iron deficient state in the bacteria, which led to a compensatory increase in the expression of the iron acquisition gene while collaterally reducing the expression of the iron storage gene.

View Article and Find Full Text PDF

Disruption of redox homeostasis in mycobacteria causes irreversible stress induction and cell death. Here, we report the dioxonaphthoimidazolium scaffold as a novel redox cycling antituberculosis chemotype with potent bactericidal activity against growing and nutrient-starved phenotypically drug-resistant nongrowing bacteria. Maximal potency was dependent on the activation of the redox cycling quinone by the positively charged scaffold and accessibility to the mycobacterial cell membrane as directed by the lipophilicity and conformational characteristics of the N-substituted side chains.

View Article and Find Full Text PDF

The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics.

View Article and Find Full Text PDF

Infigratinib (INF) is a promising selective inhibitor of fibroblast growth factor receptors 1-3 that has recently been accorded both orphan drug designation and priority review status by the US Food and Drug Administration for the treatment of advanced cholangiocarcinoma. Its propensity to undergo bioactivation to electrophilic species was recently expounded upon. However, other than causing aberrant idiosyncratic toxicities, these reactive intermediates may elicit mechanism-based inactivation of cytochrome P450 enzymes.

View Article and Find Full Text PDF

Erdafitinib (ERD) is a first-in-class pan inhibitor of fibroblast growth factor receptor 1-4 that has garnered global regulatory approval for the treatment of advanced or metastatic urothelial carcinoma. Although it has been previously reported that ERD elicits time-dependent inhibition (TDI) of cytochrome P450 (P450) 3A4 (CYP3A4), the exact biochemical nature underpinning this observation remains obfuscated. Moreover, it is also uninterrogated if CYP3A5-its highly homologous counterpart-could be susceptible to such interactions.

View Article and Find Full Text PDF

Indolecarboxamides are potent but poorly soluble mycobactericidal agents. Here we found that modifying the incipient scaffold by amide-amine substitution and replacing the indole ring with benzothiophene or benzoselenophene led to striking (10-20-fold) improvements in solubility. Potent activity could be achieved without the carboxamide linker but not in the absence of the indole ring.

View Article and Find Full Text PDF

Spiroketal indolyl Mannich bases (SIMBs) present a novel class of membrane-inserting antimycobacterials with efficacy in a tuberculosis mouse model. SIMBs exert their antibacterial activity by two mechanisms. The indolyl Mannich base scaffold causes permeabilization of bacteria, and the spiroketal moiety contributes to inhibition of the mycolic acid transporter MmpL3.

View Article and Find Full Text PDF

The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs.

View Article and Find Full Text PDF

Chemistry campaigns identified amphiphilic indolyl Mannich bases as novel membrane-permeabilizing antimycobacterials. Spiroketal analogs of this series showed increased potency, and the lead compound displayed efficacy in a mouse model of tuberculosis. Yet the mechanism by which the spiroketal moiety accomplished the potency "jump" remained unknown.

View Article and Find Full Text PDF

Persistence of infection despite extensive chemotherapy with antibiotics displaying low MICs is a hallmark of lung disease caused by (Mab). Thus, the classical MIC assay is a poor predictor of clinical outcome. Discovery of more efficacious antibiotics requires more predictive potency assays.

View Article and Find Full Text PDF

Clarithromycin (CLR) is the corner stone in regimens for the treatment of lung disease caused by . However, many strains harbor the CLR-inducible CLR resistance gene encoding a ribosome methylase. Induction of is mediated by the transcription factor .

View Article and Find Full Text PDF

Here we report the nanomolar potencies of , -dialkyldioxonaphthoimidazoliums against asexual forms of sensitive and resistant . Activity was dependent on the presence of the fused quinone-imidazolium entity and lipophilicity imparted by the N/N alkyl residues on the scaffold. Gametocytocidal activity was also detected, with most members active at IC < 1 μM.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) is a lipogenic enzyme that is selectively upregulated in malignant cells. There is growing consensus on the oncogenicity of FASN-driven lipogenesis and the potential of FASN as a druggable target in cancer. Here, we report the synthesis and FASN inhibitory activities of two novel galloyl esters of trans-stilbene EC1 and EC5.

View Article and Find Full Text PDF

Indole propionic acid (IPA), produced by the gut microbiota, is active against and However, its mechanism of action is unknown. IPA is the deamination product of tryptophan (Trp) and thus a close structural analog of this essential aromatic amino acid. Trp biosynthesis in is regulated through feedback inhibition: Trp acts as an allosteric inhibitor of anthranilate synthase TrpE, which catalyzes the first committed step in the Trp biosynthesis pathway.

View Article and Find Full Text PDF

Constitutive activation of the NF-κB signaling cascade is associated with tumourigenesis and poor prognosis in many human cancers including RCC. YM155, a small molecule inhibitor of survivin, was previously shown to potently inhibit the viability of immortalized and patient derived renal cell carcinoma (RCC) cell lines. Here we investigated the role of NF-κB signaling to the anti-cancer properties of YM155 in RCC786.

View Article and Find Full Text PDF

The inclusion of an azaspiroketal Mannich base in the membrane targeting antitubercular 6-methoxy-1- n-octyl-1 H-indole scaffold resulted in analogs with improved selectivity and submicromolar activity against Mycobacterium tuberculosis H37Rv. The potency enhancing properties of the spiro-fused ring motif was affirmed by SAR and validated in a mouse model of tuberculosis. As expected for membrane inserting agents, the indolyl azaspiroketal Mannich bases perturbed phospholipid vesicles, permeabilized bacterial cells, and induced the mycobacterial cell envelope stress reporter promoter p iniBAC.

View Article and Find Full Text PDF

Aim: To investigate the effect of dioxonaphthoimidazolium analog YM155 on cell cycle progression of the clear-cell variant of renal cell carcinoma (ccRCC).

Main Methods: Cell cycle analysis was performed using bromodeoxyuridine (BrdU) and PI, apoptosis initiation was monitored using Annexin V and proteins expression was determined using western immunoblotting.

Key Findings: Here, we showed that YM155 activated stress-related molecules (histone H2AX, checkpoint kinases Chk1 and Chk2, p53) that mediate DNA damage checkpoint responses.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC.

View Article and Find Full Text PDF

Agents that selectively target the mycobacterial membrane could potentially shorten treatment time for tuberculosis, reduce relapse, and curtail emergence of resistant strains. The lipophilicity and extensive charge-delocalized state of the triphenylphosphonium cation strongly favor accumulation within bacterial membranes. Here, we explored the antimycobacterial activities and membrane-targeting properties of indolylalkyltriphenylphosphonium analogues.

View Article and Find Full Text PDF

Cytosolic phospholipase A (cPLA) is an enzyme that releases arachidonic acid (AA) for the synthesis of eicosanoids and lysophospholipids which play critical roles in the initiation and modulation of oxidative stress and neuroinflammation. In the central nervous system, cPLA activation is implicated in the pathogenesis of various neurodegenerative diseases that involves neuroinflammation, thus making it an important pharmacological target. In this paper, a new class of arachidonic acid (AA) analogues was synthesized and evaluated for their ability to inhibit cPLA.

View Article and Find Full Text PDF

The dioxonapthoimidazolium YM155 is a survivin suppressant which has been investigated as an anticancer agent in clinical trials. Here, we investigated its growth inhibitory properties on a panel of immortalized and patient derived renal cell carcinoma (RCC) cell lines which were either deficient in the tumour suppressor von Hippel-Lindau (VHL) protein or possessed a functional copy. Neither the VHL status nor the survivin expression levels of these cell lines influenced their susceptibility to growth inhibition by YM155.

View Article and Find Full Text PDF

Antibacterials that disrupt cell membrane function have the potential to eradicate "persister" organisms and delay the emergence of resistance. Here we report the antimycobacterial activities of 4-fluoro and 6-methoxyindoles bearing a cationic amphiphilic motif represented by a lipophilic n-octyl side chain at position 1 and a positively charged azepanyl or 1,4-dioxa-8-azaspiro[4.5]decane moiety at position 3.

View Article and Find Full Text PDF