Publications by authors named "Mei-Chen Pan"

Here we report for the first time the phenomenon of continuously color-tunable electrochemiluminescence (ECL) from individual gold nanoclusters (Au NCs) confined in a porous hydrogel matrix by adjusting the concentration of the co-reactant. Specifically, the hydrogel-confined Au NCs exhibit strong dual-color ECL in an aqueous solution with triethylamine (TEA) as a co-reactant, with a record-breaking quantum yield of 95%. Unlike previously reported Au NCs, the ECL origin of the hydrogel-confined Au NCs is related to both the Au(0) kernel and the Au(i)-S surface.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are two of the most abundant epigenetic marks in mammalian genomes, and it has been proven that these dual epigenetic marks give a more accurate prediction of recurrence and survival in cancer than the individual mark. However, due to the similar structure and low expression of 5mC and 5hmC, it is challenging to distinguish and quantify the two methylation modifications. Herein, we employed the ten-eleven translocation family dioxygenases (TET) to convert 5mC to 5hmC a specific labeling process, which realized the identification of the two marks based on a nanoconfined electrochemiluminescence (ECL) platform combined with the amplification strategy of a recombinase polymerase amplification (RPA)-assisted CRISPR/Cas13a system.

View Article and Find Full Text PDF

In spite of the DNA walkers executing the signal accumulation task in the process of moving along the predetermined paths, the enhancement of walking dynamics and walking path controllability are still challenging due to the unprogrammed arrangements of DNA orbits. Taking these dilemmas into account, a bipedal DNA walker was designed skillfully by the virtue of wireframe orbits assembled by DNA cubes in order, which improved the efficiency and the continuity of walking. It could be attributed to the fact that both the contact chance and the dynamic interaction between walking strands and designated orbits were beneficial to minimize the possibility of derailment and improve the accumulation of signal.

View Article and Find Full Text PDF

Nine collections of gymnopoid fungi were studied based on morpho-molecular characteristics. The macromorphology was made according to the photograph of fresh basidiomata and field notes, while the micromorphology was examined via an optical microscope. Simultaneously, the phylogenetic analyses were performed by maximum likelihood and Bayesian inference methods based on a combined dataset of nrITS1-nr5.

View Article and Find Full Text PDF

Chemical investigation of the edible mushroom led to the isolation of one new highly degraded sterol (), and one new β-carboline alkaloid (), along with nine known compounds (-) for the first time from this mushroom. The structures of new compounds were elucidated using HR-ESI-MS data and NMR spectroscopy. In addition, anti-inflammatory activity of new compounds was evaluated against lipopolysaccharide-induced NO production in RAW 264.

View Article and Find Full Text PDF

Here, we described a novel swing arm location-controllable DNA walker based on the DNA tetrahedral nanostructures (DTNs) for nucleic acid detection using the polycyclic aromatic hydrocarbon (PAH) microcrystals (TAPE-Pe MCs) consisting of the nonplanar molecular tetrakis(4-aminophenyl)ethene (TAPE) and planar molecular perylene (Pe) as electrochemiluminescence (ECL) luminophores. Specifically, the swing arm strands and track strands were fixed simultaneously on the DTNs to obtain the location-controllable DNA walker, which possessed an improved reaction efficiency compared to that of a fixed swing arm-based DNA walker due to the quantitative and orderly swing arm on the DTNs. On the other hand, the Pe microcrystals doped by TAPE molecules could decrease the π-π stacking of Pe molecules for the ECL efficiency enhancement, achieving a blue-shifted and intense ECL emission.

View Article and Find Full Text PDF

Copper nanoclusters (Cu NCs) as emerging luminescent metal NCs are gaining increasing attention owing to the comparatively low cost and high abundance of the Cu element in nature. However, it remains challenging to manipulate the optical properties of Cu NCs. Unlike most dispersed Cu NCs, whose luminescence efficiency was restricted by nonexcited relaxation, the Cu NCs confined in a porous poly-l-cysteine (poly-l-Cys) film were generated controllably with enhanced electrochemiluminescence (ECL) by in situ electrochemical reduction.

View Article and Find Full Text PDF

Objective: To determine a method to reduce specimen hemolysis rates in pediatric blood specimens.

Methods: A total of 290 blood specimens from pediatric patients were classified into the capped group or uncapped group. The hemolysis index and levels of lactate dehydrogenase (LDH) were measured using an automated biochemical analyzer.

View Article and Find Full Text PDF

Objectives: To investigate PI3K-Akt-mTOR signaling pathway changes and the proliferation of FoxP3T cells in patients with active tuberculosis.

Methods: We isolated PBMCs and CD4CD25FoxP3T cells from peripheral blood collected from patients with active tuberculosis and healthy controls. We compared the proportion and MFI of PI3K-Akt-mTOR pathway components and PTEN by flow cytometry using specific cell-surface and intracellular markers.

View Article and Find Full Text PDF

Thalassemia is one of the most prevalent inherited disease in southern China. However, there have been only a few epidemiological studies of thalassemia in the Chaoshan region of Guangdong Province, People's Republic of China (PRC). A total of 6231 unrelated subjects in two main geographical cities of the Chaoshan region was analyzed for thalassemia.

View Article and Find Full Text PDF

β-thalassemia is a common inherited disorder worldwide including southern China, and at least 45 distinct β-thalassemia mutations have been identified in China. High-resolution melting (HRM) assay was recently introduced as a rapid, inexpensive and effective method for genotyping. However, there was no systemic study on the diagnostic capability of HRM to identify β-thalassemia.

View Article and Find Full Text PDF

Thalassemia is the commonest inherited autosomal recessive disorders of hemoglobin in southern China. We developed and evaluated a reverse dot blot (RDB) assay combined with flow-through hybridization technology platform for the rapid and simultaneous identification of 5 types of α-thalassemia and 16 types of β-thalassemia common in Chinese. Reliable genotyping of wild-type and thalassemic genomic DNA samples was achieved by means of a gene chip on which allele-specific oligonucleotide probes were immobilized on a nylon membrane.

View Article and Find Full Text PDF