Publications by authors named "Mei Yunjun"

Microplastics (MPs) are novel pollutants that can adsorb heavy metals in water environments and migrate together as carriers and are prone to aging due to the light in water. However, few reports have been published on the synergistic behavior and effects of these different types of aged MPs on the adsorption and desorption of Cr(VI). Here, two MP types─polyamide (PA) and polylactic acid (PLA)─were aged by UV irradiation, and the adsorption and desorption behaviors of MPs on Cr(VI) were studied.

View Article and Find Full Text PDF

Glyphosate, a commonly used organophosphorus herbicide in rice-crayfish cropping regions, may alter regional phosphorus cycle processes while affecting the structure of microbial communities. However, the effects of glyphosate residues on rice-crayfish systems remain unclear. In this study, we assessed the spatial and temporal distribution characteristics of glyphosate and its primary degradation products, as well as the impact mechanisms of glyphosate on microbial communities and the phosphorus cycle in rice-crayfish systems such as paddy fields, breeding ditches and recharge rivers.

View Article and Find Full Text PDF

In the last few decades, nanoparticles have been a prominent topic in various fields, particularly in agriculture, due to their unique physicochemical properties. Herein, molybdenum copper lindgrenite Cu(MoO)(OH) (CM) nanoflakes (NFs) are synthesized by a one-step reaction involving α-MoO and CuCO⋅Cu(OH)⋅xHO solution at low temperature for large scale industrial production and developed as an effective antifungal agent for the oilseed rape. This synthetic method demonstrates great potential for industrial applications.

View Article and Find Full Text PDF

Accelerated eutrophication in lakes reduces the number of submerged macrophytes and alters the residues of glyphosate and its degradation products. However, the effects of submerged macrophytes on the fate of glyphosate remain unclear. We investigated eight lakes with varying trophic levels along the middle and lower reaches of the Yangtze River in China, of which five lakes contained either glyphosate or aminomethylphosphate (AMPA).

View Article and Find Full Text PDF

Eutrophication is a severe worldwide concern caused by excessive phosphorus release. Thus, significant efforts have been made to develop phosphorus removal techniques, particularly by nanomaterial adsorption. However, because of the limitations associated with nanoparticles including easy agglomeration, and separation challenges, a novel nanocomposite adsorbent with great adsorption performance is urgently required.

View Article and Find Full Text PDF

A novel adsorbent (FeOOH@PU) for hexavalent chromium [Cr(VI)] removal was synthesized using a polyurethane foam (PU) and FeOOH via a facile one-step method. Scanning electron microscopy (SEM), FTIR, X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS) characterized the adsorbent. The influence of environmental factors was investigated to evaluate the adsorption behavior for Cr(VI).

View Article and Find Full Text PDF

Microplastics (MPs) are persistent organic pollutants globally, with a continuous increase in MP wastes near and away from the regions of human activities. Studies to date aimed to explore the impact of MPs on ecosystems, but the area of research could not go beyond environmental pollution caused by MPs. To address the menace of MPs, scientists need to pay enough attention to the biogeochemical cycles, microbial communities, and functional microorganisms.

View Article and Find Full Text PDF

Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) draw great concern due to their potential threat to aquatic ecosystems. The individual and combined effects of glyphosate and AMPA on aquatic plants in different ecological niches need to be explored. This study aimed to investigate the ecotoxicity of glyphosate and AMPA on the emergent macrophyte Acorus calamus, phytoplankton Chlorella vulgaris, and submerged macrophyte Vallisneria natans after their exposure to glyphosate and AMPA alone and to their mixture.

View Article and Find Full Text PDF

Pseudomonas sp. Y-5, a strain with simultaneous nitrification and denitrification (SND) capacity, was isolated from the Wuhan Municipal Sewage Treatment Plant. This strain could rapidly remove high concentrations of inorganic nitrogen.

View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous in farmland soils. However, few studies have evaluated their effects on the microbial community structure and nitrogen cycle of farmland soils. Here, 0.

View Article and Find Full Text PDF

The accumulation of atrazine in sediments raises wide concern due to its potential negative effects on aquatic environments. Here we collected sediments and different submerged macrophytes to simulate natural shallow lakes and to measure atrazine levels and submerged macrophyte biomass. We determined gene expressions in submerged macrophytes treated with or without atrazine.

View Article and Find Full Text PDF

The halophilic archaea (haloarchaea) live in hyersaline environments such as salt lakes, salt ponds and marine salterns. To cope with the salt stress conditions, haloarchaea have developed two fundamentally different strategies: the "salt-in" strategy and the "compatible-solute" strategy. Although investigation of the molecular mechanisms underlying the tolerance to high salt concentrations has made outstanding achievements, experimental study from the aspect of transcription is rare.

View Article and Find Full Text PDF

Although viruses of haloarchaea are the predominant predator in hypersaline ecosystem, the culture studies about halovirus-host systems are infancy. The main reason is the tradition methodology (plaque assay) for virus-host interaction depends on culturable and susceptible host. Actually, more than 90% of haloarchaea are unculturable.

View Article and Find Full Text PDF

Halovirus is a major force that affects the evolution of extreme halophiles and the biogeochemistry of hypersaline environments. However, until now, the systematic studies on the halovirus ecology and the effects of salt concentration on virus-host systems are lacking. To provide more valuable information for understanding ecological strategies of a virus-host system in the hypersaline ecosystem, we studied the interaction between halovirus SNJ1 and its host Natrinema sp.

View Article and Find Full Text PDF

A temperate haloarchaeal virus, SNJ1, was induced from the lysogenic host, Natrinema sp. J7-1, with mitomycin C, and the virus produced plaques on lawns of Natrinema sp. J7-2.

View Article and Find Full Text PDF

Halophage SNJ1 was induced with mitomycin C from Natrinema sp. strain F5. The phage produces plaques on Natrinema sp.

View Article and Find Full Text PDF

Homologous recombination (HR) was found to be so frequent in haloarchaea that its significance in evolution and diversity of this clade of life might have been underestimated. However, so far there has been no report on recombination function carried on plasmid. Here we report that a 4.

View Article and Find Full Text PDF

A novel transformation system, in which neither a nonphysiological concentration of Ca2+ and temperature shifts nor electronic shocks were required, was developed to determine whether Escherichia coli is naturally transformable. In the new protocol, E. coli was cultured normally to the stationary phase and then cultured statically at 37 degrees C in Luria-Bertani broth.

View Article and Find Full Text PDF

Autofluorescence has an advantage over the extrinsic fluorescence of an unperturbed environment during investigation, especially in complex system such as biological cells and tissues. NADH is an important fluorescent substance in living cells. The time courses of intracellular NADH autofluorescence in the process of yeast cells exposed to H(2)O(2) and ONOO(-) have been recorded in detail in this work.

View Article and Find Full Text PDF