Publications by authors named "Mei Y Chin"

Abiraterone acetate is a cytochrome P450 17A1 (CYP17A1) inhibitor that is indicated for use in both castration-resistant and castration-sensitive prostate cancer patients. To manage the mineralocorticoid effects of CYP17A1 inhibition, a glucocorticoid such as dexamethasone is co-administered with abiraterone. The goal of the present study was to understand the effect of dexamethasone on the disposition of abiraterone.

View Article and Find Full Text PDF

In spite of possessing desirable anticancer properties, currently, limited clinical success has been achieved with 20(S)-protopanaxadiol (aPPD) and 1,25-dihydroxyvitamin D3 (calcitriol). This study is designed to evaluate if the combination of aPPD with calcitriol can inhibit human prostate cancer xenograft growth by using nuclear receptor signaling. Athymic male nude mice were utilized to establish an androgen-independent human prostate cancer C4-2 cell castration-resistant prostate cancer (CRPC) xenograft model.

View Article and Find Full Text PDF

The peripheral zone (PZ) and transition zone (TZ) represent about 70% of the human prostate gland with each zone having differential ability to develop prostate cancer. Androgens and their receptor are the primary driving cause of prostate cancer growth and eventually castration-resistant prostate cancer (CRPC). De novo steroidogenesis has been identified as a key mechanism that develops during CRPC.

View Article and Find Full Text PDF

The fluid of harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant . The aim of this study was to explore the presence of antibacterial genes in the fluids of growing in the wild. Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of .

View Article and Find Full Text PDF
Article Synopsis
  • Castration-resistant prostate tumors develop the ability to produce their own androgens by increasing the levels of steroidogenic enzymes or utilizing steroid precursors from the adrenal glands, which supports their growth.
  • Research using liquid chromatography-mass spectrometry found that certain steroid precursors (like pregnenolone and progesterone) increased the formation of specific C21 steroids in prostate cancer cell lines (LNCaP and 22Rv1) and human prostate tissues.
  • The study indicated that these precursors stimulated the backdoor pathway of steroidogenesis more than the classical pathway, showing that steroid production in prostate tissues and cell lines is adaptive and influenced by the availability of these precursors.
View Article and Find Full Text PDF

We have explored the effects of 20(S)-protopanaxadiol (aPPD), a naturally derived ginsenoside, against androgen receptor (AR) positive castration resistant prostate cancer (CRPC) xenograft tumors and have examined its interactions with AR. docking studies for aPPD binding to AR, alongside transactivation bioassays and efficacy studies were carried out in the castration-resistant C4-2 xenograft model. Immunohistochemical (IHC) and Western blot analyses followed by evaluation of AR, apoptotic, cell cycle and proliferative markers in excised tumors was performed.

View Article and Find Full Text PDF

The molecular chaperone Hsp90 is overexpressed in prostate cancer (PCa) and is responsible for the folding, stabilization and maturation of multiple oncoproteins, which are implicated in PCa progression. Compared to first-in-class Hsp90 inhibitors such as 17-allylamino-demethoxygeldanamycin (17-AAG) that were clinically ineffective, second generation inhibitor AUY922 has greater solubility and efficacy. Here, transcriptomic and proteomic analyses of patient-derived PCa explants identified cytoskeletal organization as highly enriched with AUY922 treatment.

View Article and Find Full Text PDF

Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Current research on tumour-related extracellular vesicles (EVs) suggests that exosomes play a significant role in paracrine signaling pathways, thus potentially influencing cancer progression via multiple mechanisms. In fact, during the last decade numerous studies have revealed the role of EVs in the progression of various pathological conditions including cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Castration-resistant prostate cancer (CRPC) relies on androgen receptor activation and maintains levels of androgens like testosterone and DHT, which drive disease progression.
  • Current research explores the potential of pomegranate extracts (POM) to inhibit androgen production in PCa cell lines and in a mouse model, demonstrating that POM significantly reduces levels of key steroids.
  • POM treatment leads to decreased PSA levels, but there is an observed increase in AKR1C3 and AR levels, suggesting a negative feedback mechanism in response to reduced steroid levels.
View Article and Find Full Text PDF

The beneficial effects of vitamin D3 are exerted through 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the dihydroxy metabolite of vitamin D3. Hepatic and intestinal biotransformation of 1α,25(OH)2D3 and modifiers of metabolic capacity could be important determinants of bioavailability in serum and tissues. Ginsenosides and their aglycones, mainly 20(S)-protopanaxadiol (aPPD) and 20(S)-protopanaxatriol (aPPT), are routinely ingested as health supplements.

View Article and Find Full Text PDF

The chemopreventive and therapeutic effects of vitamin D3 are exerted through its dihydroxylated metabolite, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. Inactivation of 1α,25(OH)2D3 by cytochrome P450 3A4 (CYP3A4) may be an important determinant of its serum and tissue levels. Abiraterone, a steroidogenesis inhibitor used in late stage prostate cancer treatment, is a CYP17A1 inhibitor.

View Article and Find Full Text PDF

p33ING2 is a novel candidate tumor suppressor, which has been shown to be involved in the regulation of gene transcription, cell cycle arrest, and apoptosis in a p53-dependent manner for maintaining the genomic stability. Previously, we showed that p33ING2 promoted UV-induced apoptosis in human melanoma cells. To further reveal the role of p33ING2 in cellular stress response to UV irradiation, we hypothesized that p33ING2 may enhance the repair of UV-damaged DNA, similarly to its homologue p33(ING1b).

View Article and Find Full Text PDF

The roles of p33ING2 as a tumor suppressor candidate have been shown through regulation of gene transcription, induction of cell cycle arrest, and apoptosis. As p33ING2 shares 58.9% homology with p33ING1b, we hypothesized that p33ING2 shares functional similarities with p33ING1b.

View Article and Find Full Text PDF

Chk2 (Checkpoint kinase 2) is emerging as a critical mediator of genotoxic stress and diverse cellular responses. Upon ionizing radiation, Chk2 is activated to phosphorylate Cdc25C, leading to G2 phase arrest. p53 has been reported as another substrate of Chk2.

View Article and Find Full Text PDF