Publications by authors named "Mei Gao-Takai"

Bud dormancy is a crucial process in the annual growth cycle of woody perennials. In Rosaceae fruit tree species, () transcription factor genes regulating bud dormancy have been identified, but their molecular roles in meristematic tissues have not been thoroughly characterized. In this study, molecular and physiological analyses of transgenic apple plants overexpressing the Japanese apricot gene () and Japanese apricot cultivars and F individuals with contrasting dormancy characteristics revealed the metabolic pathways controlled by PmDAM6.

View Article and Find Full Text PDF

Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization.

View Article and Find Full Text PDF

The effect of temperature on the concentrations of anthocyanins and endogenous plant hormones [abscisic acid (ABA), auxin, and cytokinin] were investigated using the detached berries of two related red-skinned cultivars cv. 'Aki Queen' and 'Ruby Roman' of the table grape Vitis labrusca L. × Vitis vinifera L.

View Article and Find Full Text PDF

Most deciduous fruit trees cultivated in the temperate zone require a genotype-dependent amounts of chilling exposure for dormancy release and bud break. In Japanese apricot (Prunus mume), DORMANCY-ASSOCIATED MADS-box 6 (PmDAM6) may influence chilling-mediated dormancy release and bud break. In this study, we attempted to elucidate the biological functions of PmDAM6 related to dormancy regulation by analyzing PmDAM6-overexpressing transgenic apple (Malus spp.

View Article and Find Full Text PDF