Publications by authors named "Mehul Kumar"

Article Synopsis
  • The study investigates the impact of spatial organization in the tumor microenvironment, specifically focusing on HPV-negative oral squamous cell carcinoma (OSCC) by analyzing single-cell and spatial transcriptomics.
  • Findings reveal distinct transcriptional profiles and cellular compositions between the tumor core (TC) and leading edge (LE), with the LE showing a conserved gene expression pattern across various cancers linked to poorer clinical outcomes.
  • The research also highlights the potential for using spatially-regulated cell development models to predict drug response, providing valuable insights for targeted therapies in cancer treatment.
View Article and Find Full Text PDF

Oncolytic viruses (OVs) are an emerging cancer therapeutic that are intended to act by selectively targeting and lysing cancerous cells and by stimulating anti-tumour immune responses, while leaving normal cells mainly unaffected. Reovirus is a well-studied OV that is undergoing advanced clinical trials and has received FDA approval in selected circumstances. However, the mechanisms governing reoviral selectivity are not well characterised despite many years of effort, including those in our accompanying paper where we characterize pathways that do not consistently modulate reoviral cytolysis.

View Article and Find Full Text PDF

Unlabelled: Glioblastomas (GBM) are aggressive brain tumors with extensive intratumoral heterogeneity that contributes to treatment resistance. Spatial characterization of GBMs could provide insights into the role of the brain tumor microenvironment in regulating intratumoral heterogeneity. Here, we performed spatial transcriptomic and single-cell analyses of the mouse and human GBM microenvironment to dissect the impact of distinct anatomical regions of brains on GBM.

View Article and Find Full Text PDF

Diffuse, histologically lower grade astrocytomas of adults (LGAs) are classified based on the mutational status of the isocitrate dehydrogenase (IDH) genes. While wild-type (WT) LGAs often evolve quickly to glioblastoma (GBM), mutant tumors typically follow an indolent course. To find possible effectors of these different behaviors, we compared their respective transcriptomes.

View Article and Find Full Text PDF

There are few prognostic biomarkers and targeted therapeutics currently in use for the clinical management of oral squamous cell carcinoma (OSCC) and patient outcomes remain poor in this disease. A majority of mutations in OSCC are loss-of-function events in tumour suppressor genes that are refractory to conventional modes of targeting. Interestingly, the chromosomal segment 3q22-3q29 is amplified in many epithelial cancers, including OSCC.

View Article and Find Full Text PDF

Brain tumor–initiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs.

View Article and Find Full Text PDF

According to the WHO guideline, palliative care is an integral component of COVID-19 management. The relief of physical symptoms and the provision of psychosocial support should be practiced by all healthcare workers caring for COVID-19 patients. In this review, we aim to provide a simple outline on COVID-19, suffering in COVID-19, and the role of palliative care in COVID-19.

View Article and Find Full Text PDF

Glioblastomas (GBMs) are highly aggressive, recurrent, and lethal brain tumors that are maintained via brain tumor-initiating cells (BTICs). The aggressiveness of BTICs may be dependent on the extracellular matrix (ECM) molecules that are highly enriched within the GBM microenvironment. Here, we investigated the expression of ECM molecules in GBM patients by mining the transcriptomic databases and also staining human GBM specimens.

View Article and Find Full Text PDF

Poly-ADP ribose polymerase (PARP) inhibitors are currently used in the treatment of several cancers carrying mutations in the breast and ovarian cancer susceptibility genes and , with many more potential applications under study and in clinical trials. Here, we discuss the potential for extending PARP inhibitor therapies to tumours with deficiencies in the DNA damage-activated protein kinase, Ataxia-Telangiectasia Mutated (ATM). We highlight our recent findings that PARP inhibition alone is cytostatic but not cytotoxic in ATM-deficient cancer cells and that the combination of a PARP inhibitor with an ATR (ATM, Rad3-related) inhibitor is required to induce cell death.

View Article and Find Full Text PDF

Myeloid cells that infiltrate into brain tumors are deactivated or exploited by the tumor cells. We previously demonstrated that compromised microglia, monocytes, and macrophages in malignant gliomas could be reactivated by amphotericin-B to contain the growth of brain tumorinitiating cells (BTICs). We identified meclocycline as another activator of microglia, so we sought to test whether its better-tolerated derivative, demeclocycline, also stimulates monocytes to restrict BTIC growth.

View Article and Find Full Text PDF