Publications by authors named "Mehul Khimani"

The present communication offers a comprehensive overview of the self-assembly of bile salts emphasizing their mixed smart aggregates with a variety of amphiphiles. Using an updated literature survey, we have explored the dissimilar interactions of bile salts with different types of surfactants, phospholipids, ionic liquids, drugs, and a variety of natural and synthetic polymers. While assembling this review, special attention was also provided to the potency of bile salts to alter the size/shape of aggregates formed by several amphiphiles to use these aggregates for solubility improvement of medicinally important compounds, active pharmaceutical ingredients, and also to develop their smart delivery vehicles.

View Article and Find Full Text PDF

Drug delivery technology has a wide spectrum, which is continuously being upgraded at a stupendous speed. Different fabricated nanoparticles and drugs possessing low solubility and poor pharmacokinetic profiles are the two major substances extensively delivered to target sites. Among the colloidal carriers, nanolipid dispersions (liposomes, deformable liposomes, virosomes, ethosomes, and solid lipid nanoparticles) are ideal delivery systems with the advantages of biodegradation and nontoxicity.

View Article and Find Full Text PDF

Metal-free imidazolium-based ionic liquid (IL) Brønsted acids 1-methyl imidazolium hydrogen sulphate [HMIM]HSO and 1-methyl benzimidazolium hydrogen sulphate [HMBIM]HSO were synthesized. Their physicochemical properties were investigated using spectroscopic and thermal techniques, including UV-Vis, FT-IR, H NMR, C-NMR, mass spectrometry, and TGA. The ILs were immobilized on mesoporous silica gel and characterized by FT-IR spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis, ammonia temperature-programmed desorption, and thermogravimetric analysis.

View Article and Find Full Text PDF

Micelles of ABA type triblock copolymers (where A is polyethylene oxide PEO and B is polypropylene oxide PPO) viz. Pluronic® P103, P104 and P105 (each containing almost the same PPO mol wt. ~ 3250 g/mol and 30, 40 and 50 wt.

View Article and Find Full Text PDF