Understanding the structure of nanoparticles under (electro)catalytic operating conditions is crucial for uncovering structure-property relationships. By combining X-ray total scattering and pair distribution function analysis with small-angle X-ray scattering (SAXS), we obtained comprehensive structural information on ultrasmall (<3 nm) iridium nanoparticles and tracked their changes during oxygen evolution reaction (OER) in acid. When subjected to electrochemical conditions at reducing potentials, the metallic Ir nanoparticles are found to be decahedral.
View Article and Find Full Text PDFAdvanced in situ analyses are indispensable for comprehending the catalyst aging mechanisms of Pt-based PEM fuel cell cathode materials, particularly during accelerated stress tests (ASTs). In this study, a combination of in situ small-angle and wide-angle X-ray scattering (SAXS & WAXS) techniques were employed to establish correlations between structural parameters (crystal phase, quantity, and size) of a highly active skeleton-PtCo (sk-PtCo) catalyst and their degradation cycles within the potential range of the start-up/shut-down (SUSD) conditions. Despite the complex case of the sk-PtCo catalyst comprising two distinct fcc alloy phases, our complementary techniques enabled in situ monitoring of structural changes in each crystal phase in detail.
View Article and Find Full Text PDFNanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis.
View Article and Find Full Text PDFNumerous synthetic techniques for the fabrication of porous metal electrodes were developed in recent decades. A very promising and facile route is the 3D printing of structures, which can be designed directly on the computer first. However, the current techniques allow structures to be printed with a resolution down to 20 µm, which is still quite rough regarding tuning the pore distribution and diameter of electrode materials for potential applications.
View Article and Find Full Text PDFIridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrCl precursors investigated here.
View Article and Find Full Text PDFIn this mini-review we compare two prototypical metal foam electrocatalysts applied to the transformation of CO₂ into value-added products ( alcohols on Cu foams and formate on Bi foams). A substantial improvement in the catalyst performance is typically achieved through thermal annealing of the as-deposited foam materials, followed by the electro-reduction of the pre-formed oxidic precursors prior or during the actual CO₂ electrolysis. Utilizing highly insightful and sensitive complementary analytical techniques (XAS, XRD, and Raman spectroscopy) we demonstrate that this catalyst pre-activation process is entirely accomplished in case of the oxidized Cu foams prior to the formation of hydrocarbons and alcohols from the CO₂.
View Article and Find Full Text PDFQuantitative structural characterization of nanomaterials is important to tailor their functional properties. Corrosion of AgAu-alloy nanoparticles (NPs) results in porous structures, making them interesting for applications especially in the fields of catalysis and surface-enhanced Raman spectroscopy. For the present report, structures of dealloyed NPs were reconstructed three-dimensionally using scanning transmission electron microscopy tomography.
View Article and Find Full Text PDFUnderstanding the formation of nanomaterials down to the atomic level is key to rational design of advanced materials. Despite their widespread use and intensive study over the years, the detailed formation mechanism of platinum (Pt) nanoparticles remains challenging to explore and rationalize. Here, various characterization techniques, and in particular X-ray total scattering with pair distribution function (PDF) analysis, are used to follow the structural and chemical changes taking place during a surfactant-free synthesis of Pt nanoparticles in alkaline methanol.
View Article and Find Full Text PDFSeveral concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity.
View Article and Find Full Text PDFUnderstanding the formation of nanoparticles (NPs) is key to develop materials by sustainable routes. The Co4Cat process is a new synthesis of precious metal NPs in alkaline mono-alcohols well-suited to develop active nanocatalysts. The synthesis is 'facile', surfactant-free and performed under mild conditions like low temperature.
View Article and Find Full Text PDFAutocatalytic deposition represents a facile, versatile, and scalable wet-chemical tool for nanofabrication. However, the intricate component interplay in plating baths containing multiple metal species impedes alloy deposition. We resolved this challenge in the bimetallic copper-platinum system by exploiting the kinetic stability of platinum complexes, which allows adjusting their ligand sphere and thus reactivity independently from the present copper ions in a preceding, thermally activated ligand exchange step.
View Article and Find Full Text PDFThe interfacial decomposition products forming the so-called solid-electrolyte interphase (SEI) significantly determine the destiny of a Li-ion battery. Ultimate knowledge of its detailed behavior and better control are required for higher rates, longer life-time, and increased safety. Employing an electrochemical surface force apparatus, it is possible to control the growth and to investigate the mechanical properties of an SEI in a lithium-ion battery environment.
View Article and Find Full Text PDFThe recently reported Co4Cat process is a synthesis method bearing ecological and economic benefits to prepare precious-metal nanoparticles (NPs) with optimized catalytic properties. In the Co4Cat process, a metal precursor (e.g.
View Article and Find Full Text PDFDue to their distinctive electronic, optical, and chemical properties, metal nanoplates represent important building blocks for creating functional superstructures. Here, a general deposition method for synthesizing Ag nanoplate architectures, which is compatible with a wide substrate range (flexible, curved, or recessed; consisting of carbon, silicon, metals, oxides, or polymers) is reported. By adjusting the reaction conditions, nucleation can be triggered in the bulk solution, on seeds and by electrodeposition, allowing the production of nanoplate suspensions as well as direct surface modification with open-porous nanoplate films.
View Article and Find Full Text PDFThe atomic redistribution processes occurring in multiparticle nanostructures are hardly understood. To obtain a more detailed insight, we applied high-resolution microscopic, diffraction and spectroscopic characterization techniques to investigate the fine structure and elemental distribution of various bimetallic aerogels with 1:1 compositions, prepared by self-assembly of single monometallic nanoparticles. The system Au-Ag exhibited a complete alloy formation, whereas Pt-Pd aerogels formed a Pd-based network with embedded Pt particles.
View Article and Find Full Text PDFWell-defined model systems are needed for better understanding of the relationship between optical, electronic, magnetic, and catalytic properties of nanoparticles and their structure. Chemical synthesis of metal nanoparticles results in large size and shape dispersion and lack of lateral order. In contrast, conventional top-down lithography techniques provide control over the lateral order and dimensions.
View Article and Find Full Text PDFCONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity.
View Article and Find Full Text PDFFundamental understanding about the thermal stability of nanoparticles and deliberate control of structural and morphological changes under reactive conditions is of general importance for a wide range of reaction processes in heterogeneous and electrochemical catalysis. Herein, we present a parametric study of the thermal stability of carbon-supported Pt nanoparticles at 80 °C and 160 °C, with an initial particle size below 3 nm, using in situ high-temperature X-ray diffraction (HT-XRD). The effects on the thermal stability of carbon-supported Pt nanoparticles are investigated with control parameters such as Brunauer-Emmet-Teller (BET) surface area, metal loading, temperature, and gas environment.
View Article and Find Full Text PDFChemical dealloying of Pt binary alloy precursors has emerged as a novel and important preparation process for highly active fuel cell catalysts. Dealloying is a selective (electro)chemical leaching of a less noble metal M from a M rich Pt alloy precursor material and has been a familiar subject of macroscale corrosion technology for decades. The atomic processes occurring during the dealloying of nanoscale materials, however, are virtually unexplored and hence poorly understood.
View Article and Find Full Text PDFUnderstanding and improving durability of fuel cell catalysts are currently one of the major goals in fuel cell research. Here, we present a comparative stability study of multi walled carbon nanotube (MWCNT) and conventional carbon supported platinum nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). The aim of this study was to obtain insight into the mechanisms controlling degradation, in particular the role of nanoparticle coarsening and support corrosion effects.
View Article and Find Full Text PDF