Publications by authors named "Mehtab Farooqui"

For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophils' inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability.

View Article and Find Full Text PDF

While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability.

View Article and Find Full Text PDF

Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces.

View Article and Find Full Text PDF

Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus.

View Article and Find Full Text PDF

For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophil inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability.

View Article and Find Full Text PDF

While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability.

View Article and Find Full Text PDF

Stroke is one of the main causes of death in the US and post-stroke treatment options remain limited. Ischemic stroke is caused by a blood clot that compromises blood supply to the brain, rapidly leading to tissue death at the core of the infarcted area surrounded by a hypoxic and nutrient-starved region known as the penumbra. Recent evidence suggests that astrocytes in the penumbral region play a dual role in stroke response, promoting further neural and tissue damage or improving tissue repair depending on the microenvironment.

View Article and Find Full Text PDF

Tumor-specific metabolic adaptations offer an interesting therapeutic opportunity to selectively destroy cancer cells. However, solid tumors also present gradients of nutrients and waste products across the tumor mass, forcing tumor cells to adapt their metabolism depending on nutrient availability in the surrounding microenvironment. Thus, solid tumors display a heterogenous metabolic phenotype across the tumor mass, which complicates the design of effective therapies that target all the tumor populations present.

View Article and Find Full Text PDF

Luminal geometries are common structures in biology, which are challenging to mimic using conventional in vitro techniques based on the use of Petri dishes. In this context, microfluidic systems can mimic the lumen geometry, enabling a large variety of studies. However, most microfluidic models still rely on polydimethylsiloxane (PDMS), a material that is not amenable for high-throughput fabrication and presents some limitations compared with other materials such as polystyrene.

View Article and Find Full Text PDF