A method was developed and validated to determine the intradermal (ID) fluid delivery potential of several ID devices, including hollow microneedles. The novel method used water soluble technetium-99 m pertechnetate (TcO) diluted in normal saline to measure the volume of fluid delivered to and remaining in the skin. The fluid that back-flowed to the skin surface and the fluid left on the device surface were also quantified, thus capturing all fluid volumes deposited during intradermal injections.
View Article and Find Full Text PDFWe present the systematic design, fabrication, and characterization of a multiplexed label-free lab-on-a-chip biosensor using silicon nitride (SiN) microring resonators. Sensor design is addressed through a systematic approach that enables optimizing the sensor according to the specific noise characteristics of the setup. We find that an optimal 6 dB undercoupled resonator consumes 40% less power in our platform to achieve the same limit-of-detection as the conventional designs using critically coupled resonators that have the maximum light-matter interaction.
View Article and Find Full Text PDF