The design of sacrificial cathodic protection (CP) systems conventionally involves steady-state assumptions, which means design parameters are considered constant during the in-service life of CP systems. In contrast, it is evident by experimental observations (including field measurements) that cathodic protection is a transient process due to variations in electrolyte properties such as seasonal changes in electrical conductivity of soil, depletion of anodes, and formation of corrosion deposits on anode material surface, to name a few. The lack of practical time-dependent models on this critical issue is apparent in the literature; accordingly, in this study, a pseudo transient electrochemical model is adopted to highlight the transient behavior of cathodic protection systems and investigate key differences with steady-state behavior.
View Article and Find Full Text PDF