Publications by authors named "Mehrnoosh Azodi"

Several types of engineered nanoparticles (ENPs) are being considered for direct application to soils to reduce the application and degradation of pesticides, provide micronutrients, control pathogens, and increase crop yields. This study examined the effects of different metal ENPs and their dissolved ions on the microbial community composition and enzyme activity of agricultural soil amended with biosolids. The activity of five extracellular nutrient-cycling enzymes was measured in biosolid-amended soils treated with different concentrations (1, 10, or 100 mg ENP/kg soil) of silver (nAg), zinc oxide (nZnO), copper oxide (nCuO), or titanium dioxide (nTiO) nanoparticles and their ions over a 30-day period.

View Article and Find Full Text PDF

Ag nanoparticles (nAg) are used in various consumer products and a significant fraction is eventually discharged with municipal wastewater (WW). In this study we assessed the release of Ag from polyvinylpyrrolidone (PVP)- and citrate-coated 80 nm nAg in aerobic WW effluent and mixed liquor and the related changes in nAg size, using single particle ICP-MS (spICP-MS). The concentration of dissolved (nonparticulate) Ag in WW effluent was 0.

View Article and Find Full Text PDF

We report the piezoelectric and ferroelectric properties of individual one-dimensional objects made of Bi(4)Ti(3)O(12) (BiT). The nanorods and nanowires investigated in this study were fabricated by a two-step process: 1) preparation of reactive templates using hydrothermal-like synthesis and colloidal chemistry and 2) transformation of the reactive templates in Bi(4)Ti(3)O(12) by solid-state reaction, overcoming the morphological instability problem of 1-D templates. Using piezoresponse force microscopy (PFM) with both out-of-plane and in-plane detection capability, we show that both types of objects exhibit strong piezoelectric activity and good switching ferroelectric behavior.

View Article and Find Full Text PDF