Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity.
View Article and Find Full Text PDFCulture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. Here, we report that inhibition of the epigenetic regulator lysine-specific histone demethylase 1A (LSD1) induces a rapid expansion of human cord blood-derived CD34+ cells and promotes in vitro propagation of long-term repopulating HSCs by preventing differentiation. The phenotype and molecular characteristics of cells treated with LSD1 inhibitors were highly similar to cells treated with UM171, an agent promoting expansion of HSCs through undefined mechanisms and currently being tested in clinical trials.
View Article and Find Full Text PDFDysregulation of cytokines in the bone marrow (BM) microenvironment promotes acute myeloid leukemia (AML) cell growth. Due to the complexity and low throughput of stem-cell based assays, studying the role of cytokines in the BM niche in a screening setting is challenging. Here, we developed an cytokine screen using 11 arrayed molecular barcodes, allowing for a competitive readout of leukemia-initiating capacity.
View Article and Find Full Text PDFHematopoietic stem cell transplantation often involves the cryopreservation of stem cell products. Currently, the standard cryoprotective agent (CPA) is dimethyl sulfoxide (DMSO), which is known to cause concentration-related toxicity and side effects when administered to patients. Based on promising in vitro data from our previous study using pentaisomaltose (a 1 kDa subfraction of Dextran 1) as an alternative to DMSO for cryopreservation of hematopoietic progenitor cells (HPCs) from apheresis products, we proceeded to a preclinical model and compared the two CPAs with respect to engraftment of human hematopoietic stem and progenitor cells (HSPCs) in the immunodeficient NSG mouse model.
View Article and Find Full Text PDFDespite extensive studies, defining culture conditions in which hematopoietic stem cells can be expanded has been challenging. Here we show that chemical inhibition of the NF-κB signaling pathway leads to a significant improvement of hematopoietic stem cell function from cultured human umbilical cord blood derived CD34 cells. We found a distinct peak of activation of the NF-κB pathway shortly after cells were put in culture, and consequently inhibition of the pathway was both necessary and sufficient during the first 24 hours of culture where it reduced the levels of several pro-inflammatory cytokines.
View Article and Find Full Text PDFAdhesion is a key component of hematopoietic stem cell regulation mediating homing and retention to the niche in the bone marrow. Here, using an RNA interference screen, we identify cytohesin 1 (CYTH1) as a critical mediator of adhesive properties in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs). Knockdown of CYTH1 disrupted adhesion of HSPCs to primary human mesenchymal stroma cells.
View Article and Find Full Text PDFWe report on a forward RNAi screen in primary human hematopoietic stem and progenitor cells, using pooled lentiviral shRNA libraries deconvoluted by next generation sequencing. We identify MAPK14/p38α as a modulator of ex vivo stem cell proliferation and show that pharmacologic inhibition of p38 dramatically enhances the stem cell activity of cultured umbilical cord blood derived hematopoietic cells. p38 inhibitors should thus be considered in strategies aiming at expanding stem cells for clinical benefit.
View Article and Find Full Text PDF