Background: Moldable hydrogel-based techniques loaded with osteoinductive agents such as metformin have become a promising field for reconstructing critical-sized bone defects, particularly in those with irregular shapes. Here, we used metformin incorporated in an alginate/hydroxyapatite hydrogel to accelerate the repair of the rabbit critical-sized mandibular defect.
Methods: Cytotoxicity and osteoinduction of the metformin-loaded alginate/hydroxyapatite hydrogel were evaluated by culturing the osteosarcoma cell line (MG63).
Wound healing is a complex process that orchestrates the coordinated action of various cells, cytokines and growth factors. Nanotechnology offers exciting new possibilities for enhancing the healing process by providing novel materials and approaches to deliver bioactive molecules to the wound site. This article elucidates recent advancements in utilizing nanoparticles, nanofibres and nanosheets for wound healing.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
February 2024
Alzheimer's disease (AD) is a neurodegenerative disorder accompanied by a reduction in cognition and memory. Till now, there is no definite cure for AD, although, there are treatments available that may improve some symptoms. Currently, in regenerative medicine stem cells are widely used, mainly for treating neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Tissue engineering focuses on reconstructing the damaged meniscus by mimicking the native meniscus. The application of mechanical loading on chondrocyte-laden decellularized whole meniscus is providing the natural microenvironment. The goal of this study was to evaluate the effects of dynamic compression and shear load on chondrocyte-laden decellularized meniscus.
View Article and Find Full Text PDFCartilage engineering has the potential to overcome clinical deficiency in joint disorders. Decellularized extracellular matrix (dECM) has great biocompatibility and bioactivity and can be considered an appropriate natural scaffold for tissue engineering applications. Both insulin-like growth factor-1 (IGF-1) and mechanical compression stimulate the production of cartilage ECM, modulate mechanical properties, and gene expression.
View Article and Find Full Text PDF