Publications by authors named "Mehrdad Khatami"

Small non-coding RNAs (sRNAs) are a key part of gene expression regulation in bacteria. Many physiologic activities like adaptation to environmental stresses, antibiotic resistance, quorum sensing, and modulation of the host immune response are regulated directly or indirectly by sRNAs in Gram-negative bacteria. Therefore, sRNAs can be considered as potentially useful therapeutic options.

View Article and Find Full Text PDF

Introduction: Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • * Key factors influencing scaffold effectiveness are discussed, such as porosity, surface chemistry, and degradation behavior, along with common production methods for creating porous materials.
  • * The review also highlights emerging therapies like gene delivery and secretome-based treatments, while outlining both the promising results and significant limitations in the clinical use of new BTE materials.
View Article and Find Full Text PDF

Non-viral gene delivery is a new therapeutic in the treating genetic disorders. The most important challenge in nonviral gene transformation is the immunogenicity of carriers. Nowadays, The immunogenicity of nanocarriers as a deliverer of nucleic acid molecules has received significant attention.

View Article and Find Full Text PDF

Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFeO) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles.

View Article and Find Full Text PDF

Here, we reported the biosynthesis of silver nanoparticles (AgNPs) using Urtica dioica (nettle) leaf extract as green reducing and capping agents and investigate their anticancer and antibacterial, activity. The Nettle-mediated biosynthesized AgNPs was characterized by UV-Vis a spectrophotometer. Their size, shape and elemental analysis were determined with the using of SEM and TEM.

View Article and Find Full Text PDF

Hyperthermia is an additional treatment method to radiation therapy/chemotherapy, which increases the survival rate of patients without side effects. Nowadays, Auroshell nanoparticles have attracted much attention due to their precise control over heat use for medical purposes. In this research, iron/gold Auroshell nanoparticles were synthesised using green nanotechnology approach.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature.

View Article and Find Full Text PDF

Herein, we designed a DNA framework-based intelligent nanorobot using toehold-mediated strand displacement reaction-based molecular programming and logic gate operation for the selective and synchronous detection of miR21 and miR125b, which are known as significant cancer biomarkers. Moreover, to investigate the applicability of our design, DNA nanorobots were implemented as capping agents onto the pores of MSNs. These agents can develop a logic-responsive hybrid nanostructure capable of specific drug release in the presence of both targets.

View Article and Find Full Text PDF

Developing biosynthesis of silver nanoparticles (Ag-NPs) using plant extract is an environmentally friendly method to reduce the use of harmful chemical substances. The green synthesis of Ag-NPs by Lawsonia inermis extract and its cellular toxicity and the antimicrobial effect was studied. The physical and chemical properties of synthesised Ag-NPs were investigated using UV-visible spectroscopy, infrared spectroscopy, X-ray diffraction (XRD), scanning, and transmission electron microscopy.

View Article and Find Full Text PDF

In this research, silver-doped zinc oxide (SdZnO) nanoparticles (NPs) were synthesized in an environmental-friendly manner. The synthesized NPs were identified by UV-vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Finally, the antimicrobial activity of synthesized ZnO and SdZnO NPs was performed.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner.

View Article and Find Full Text PDF

Dental decay is known in the world as the most common human infectious disease. Ascending process of dental caries index in the world shows the failure of oral disease prevention. Streptococcus mutans bacteria cause acid damage and tooth decay by producing acid over time.

View Article and Find Full Text PDF

Zn-doped CuFeO nanoparticles (NPs) were eco-friendly synthesized using plant extract. These nanoparticles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and thermal gravimetric analysis (TGA). SEM image showed spherical NPs with size range less than 30 nm.

View Article and Find Full Text PDF

The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis.

View Article and Find Full Text PDF

Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe O nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h.

View Article and Find Full Text PDF

As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers.

View Article and Find Full Text PDF

In this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

In this study, potassium-doped zinc oxide nanoparticles (K-doped ZnO NPs) were green-synthesized using pine pollen extracts based on bioethics principles. The synthesized NPs were analyzed using X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDXA), and transmission electron microscopy (TEM). The cytotoxicity of these nanoparticles (NPs) on normal macrophage cells and cancer cell lines was evaluated.

View Article and Find Full Text PDF

In this study, pH-responsive niosomal methotrexate (MTX) modified with ergosterol was prepared for potential anticancer application. The prepared formulation had a size of 176.7 ± 3.

View Article and Find Full Text PDF

Greener methods for the synthesis of various nanostructures with well-organized characteristics and biomedical applicability have demonstrated several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. Spinel nickel ferrite (NiFeO) nanowhiskers with rod-like structures were synthesized using a simple and green method; these nanostructures were evaluated by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, and X-ray energy diffraction spectroscopy. Additionally, the prepared nanowhiskers could significantly reduce the survival of Leishmania major promastigotes, at a concentration of 500 μg/mL; the survival of promastigotes was reduced to ≃ 26%.

View Article and Find Full Text PDF

The physical and chemical properties of Nickel oxide nanoparticles (NiO-NPs) have attracted the attention of many and in this regard, this study was performed to produce NiO-NPs by the means of Salvia hispanica L. (chia) seeds extract as the capping agent. Physical and morphological features of the obtained NiO-NPs were examined through the application of TGA, FTIR, UV-Vis, XRD, FESEM/EDAX/PSA, and VSM procedures.

View Article and Find Full Text PDF