Publications by authors named "Mehrana R Nejad"

Article Synopsis
  • In tissue formation and repair, cells generate active forces that lead to complex motion patterns, but how these forces change over time is not fully understood.
  • Researchers measured the orientation of cell shapes and their generated stresses, finding that contractile stresses often misalign with the cell body despite an assumed relationship.
  • A new continuum model was developed to show that cells can control their contractile forces independently of their shape, indicating a more flexible relationship between cell forces and shape than previously believed.
View Article and Find Full Text PDF

Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary.

View Article and Find Full Text PDF

Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation.

View Article and Find Full Text PDF

A wide range of living and artificial active matter exists in close contact with substrates and under strong confinement, where in addition to dipolar active stresses, quadrupolar active stresses can become important. Here, we numerically investigate the impact of quadrupolar non-equilibrium stresses on the emergent patterns of self-organisation in non-momentum conserving active nematics. Our results reveal that beyond having stabilising effects, the quadrupolar active forces can induce various modes of topological defect motion in active nematics.

View Article and Find Full Text PDF

We use numerical simulations and linear stability analysis to study an active nematic layer where the director is allowed to point out of the plane. Our results highlight the difference between extensile and contractile systems. Contractile stress suppresses the flows perpendicular to the layer and favors in-plane orientations of the director.

View Article and Find Full Text PDF

We use analytic arguments and numerical solutions of the continuum, active nematohydrodynamic equations to study how friction alters the behaviour of active nematics. Concentrating on the case where there is nematic ordering in the passive limit, we show that, as the friction is increased, memory effects become more prominent and +1/2 topological defects leave increasingly persistent trails in the director field as they pass. The trails are preferential sites for defect formation and they tend to impose polar order on any new +1/2 defects.

View Article and Find Full Text PDF

We use continuum simulations to study the impact of friction on the ordering of defects in an active nematic. Even in a frictionless system, +1/2 defects tend to align side by side and orient antiparallel reflecting their propensity to form, and circulate with, flow vortices. Increasing friction enhances the effectiveness of the defect-defect interactions, and defects form dynamically evolving, large-scale, positionally, and orientationally ordered structures, which can be explained as a competition between hexagonal packing, preferred by the -1/2 defects, and rectangular packing, preferred by the +1/2 defects.

View Article and Find Full Text PDF

Ordered phases in active suspensions of polar swimmers are under long-wavelength hydrodynamic mediated instabilities. In this article, we show that chemical molecules dissolved in aqueous suspensions, as an unavoidable part of most wet active systems, can mediate long-range interactions and subsequently stabilize the polar phase. Chemoattractants in living suspensions and dissolved molecules in synthesized Janus suspensions are reminiscent of such chemical molecules.

View Article and Find Full Text PDF