Publications by authors named "Mehrana Mohtasebi"

To address many of the deficiencies in optical neuroimaging technologies, such as poor tempo-spatial resolution, low penetration depth, contact-based measurement, and time-consuming image reconstruction, a novel, noncontact, portable, time-resolved laser speckle contrast imaging (TR-LSCI) technique has been developed for continuous, fast, and high-resolution 2D mapping of cerebral blood flow (CBF) at different depths of the head. TR-LSCI illuminates the head with picosecond-pulsed, coherent, widefield near-infrared light and synchronizes a fast, high-resolution, gated single-photon avalanche diode camera to selectively collect diffuse photons with longer pathlengths through the head, thus improving the accuracy of CBF measurement in the deep brain. The reconstruction of a CBF map was dramatically expedited by incorporating convolution functions with parallel computations.

View Article and Find Full Text PDF

Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.

Aim: This study aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.

View Article and Find Full Text PDF

Background: Intermittent hypoxemia (IH) may influence retinopathy of prematurity (ROP) development in preterm infants, however, previous studies had mixed results. This study tests the hypothesis that increased IH is associated with Type 1 ROP; a stage beyond which treatment is indicated.

Methods: IH was quantified by continuously monitoring oxygen saturation (SpO) using high-resolution pulse oximeters during the first 10 weeks of life.

View Article and Find Full Text PDF

Background: Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants.

Methods: DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement.

View Article and Find Full Text PDF

Malignant glioma (MG) is the most common type of primary malignant brain tumors. Surgical resection of MG remains the cornerstone of therapy and the extent of resection correlates with patient survival. A limiting factor for resection, however, is the difficulty in differentiating the tumor from normal tissue during surgery.

View Article and Find Full Text PDF

Significance: Frequent assessment of cerebral blood flow (CBF) is crucial for the diagnosis and management of cerebral vascular diseases. In contrast to large and expensive imaging modalities, such as nuclear medicine and magnetic resonance imaging, optical imaging techniques are portable and inexpensive tools for continuous measurements of cerebral hemodynamics. The recent development of an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) enables three-dimensional (3D) imaging of CBF distributions.

View Article and Find Full Text PDF

Background: Intermittent hypoxemia (IH) may influence retinopathy of prematurity (ROP) development in preterm infants, however, previous studies had mixed results. This study aims to assess the influence and evaluate the predictive ability of IH measures on Type 1 ROP, a stage beyond which ROP treatment is indicated.

Methods: IH was quantified by continuously monitoring oxygen saturation (SpO) using high-resolution pulse oximeters during the first 10 weeks of life.

View Article and Find Full Text PDF

Impact: The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units.Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results.No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events.

View Article and Find Full Text PDF

Summary: Insufficient blood flow causes mastectomy skin flap necrosis in 5 to 30 percent of cases. Fluorescence angiography with the injection of indocyanine green dye has shown high sensitivities (90 to 100 percent) but moderate specificities (72 to 50 percent) in predicting mastectomy skin flap necrosis. However, a number of challenging issues limit its wide acceptance in clinical settings, including allergic reaction, short time-window for observation, and high cost for equipment and supplies.

View Article and Find Full Text PDF

We adapted and tested an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) system for 3D imaging of cerebral blood flow (CBF) variations in perinatal disease models utilizing neonatal piglets, which closely resemble human neonates. CBF variations were concurrently measured by the scDCT and an established diffuse correlation spectroscopy (DCS) during global ischemia, intraventricular hemorrhage, and asphyxia; significant correlations were observed. Moreover, CBF variations associated reasonably with vital pathophysiological changes.

View Article and Find Full Text PDF

Neonatal MR templates are appropriate for brain structural analysis and spatial normalization. However, they do not provide the essential accurate details of cranial bones and fontanels-sutures. Distinctly, CT images provide the best contrast for bone definition and fontanels-sutures.

View Article and Find Full Text PDF