Fast (sub-second) spectroscopy with high spectral resolution is of vital importance for revealing quantum chemistry kinetics of complex chemical and biological reactions. Fourier transform (FT) spectrometers can achieve high spectral resolution and operate at hundreds of ms time scales in rapid-scan mode. However, the linear translation of a scanning mirror imposes stringent time-resolution limitations to these systems, which makes simultaneous high spectral and temporal resolution very difficult.
View Article and Find Full Text PDFWe present quantum cascade laser (QCL) frequency comb devices with engineered waveguides for managing the dispersion. The QCL waveguide consists of multiple sections with different waveguide widths. The narrow and wide sections of the waveguide are designed in a way to compensate the group velocity dispersion (GVD) of each other and thereby produce a flat and slightly negative GVD for the QCL.
View Article and Find Full Text PDFThe generation of frequency combs in the mid-infrared (MIR) spectral range by quantum cascade lasers (QCLs) has the potential for revolutionizing dual-comb multi-heterodyne spectroscopy in the molecular fingerprint region. However, in contrast to frequency combs based on passively mode-locked ultrafast lasers, their operation relies on a completely different mechanism resulting from a four-wave mixing process occurring in the semiconductor gain medium that locks the modes together. As a result, these lasers do not emit pulses and no direct self-referencing of a QCL comb spectrum has been achieved so far.
View Article and Find Full Text PDFWhen the carrier density is increased in a semiconductor, according to the predictions of Sir Nevil Mott, a transition should occur from an insulating state consisting of a gas of excitons to a conductive electron-hole plasma. This crossover, usually referred to as the Mott transition, is driven by the mutual effects of phase-space filling and Coulomb screening because of the presence of other charges nearby. It drastically affects the optical and electrical characteristics of semiconductors and may, for example, drive the transition from a polariton laser to a vertical cavity surface-emitting laser.
View Article and Find Full Text PDFOptimizing the electronic structures and carrier dynamics in semiconductors at atomic scale is an essential issue for innovative device applications. Besides the traditional chemical doping and the use of homo/heterostructures, elastic strain has been proposed as a promising possibility. Here, we report on the direct observation of the dynamics of exciton transport in a ZnO microwire under pure elastic bending deformation, by using cathodoluminescence with high temporal, spatial, and energy resolutions.
View Article and Find Full Text PDF