Metabolic reprogramming of the tumor microenvironment is recognized as a cancer hallmark. To identify new molecular processes associated with tumor metabolism, we analyzed the transcriptome of bulk and flow-sorted human primary non-small cell lung cancer (NSCLC) together with FDG-PET scans, which provide a clinical measure of glucose uptake. Tumors with higher glucose uptake were functionally enriched for molecular processes associated with invasion in adenocarcinoma and cell growth in squamous cell carcinoma (SCC).
View Article and Find Full Text PDFThis study investigated the relationship between epidermal growth factor receptor () and Kirsten rat sarcoma viral oncogene homolog () mutations in non-small-cell lung cancer (NSCLC) and quantitative FDG-PET/CT parameters including tumor heterogeneity. 131 patients with NSCLC underwent staging FDG-PET/CT followed by tumor resection and histopathological analysis that included testing for the and gene mutations. Patient and lesion characteristics, including smoking habits and FDG uptake parameters, were correlated to each gene mutation.
View Article and Find Full Text PDFObjective: Differences in the attenuation correction methods used in PET/CT scanners versus the newly introduced whole-body simultaneous PET/MRI reportedly result in differences in standardized uptake values (SUVs) in the normal skeleton. The aim of the study was to compare the semiquantitative FDG uptake in the normal skeleton using time-of-flight (TOF) PET/MRI versus PET/CT with and without TOF.
Subjects And Methods: Participants received a single FDG injection and underwent non-TOF and TOF PET/CT (n = 23) or non-TOF PET/CT and TOF PET/MRI (n = 50).
Purpose: The purpose of this study was to compare combined PET/MRI with PET/CT and cardiac MRI in the evaluation of cardiac sarcoidosis and myocarditis.
Methods: Ten patients (4 men and 6 women; 56.1 ± 9.
Purpose: To compare the conspicuity of malignant lesions between FDG PET/CT and a new simultaneous, time-of-flight (TOF) enabled PET/MRI scanner.
Methods: All patients underwent a single-injection of FDG, followed by a dual imaging protocol consisting of PET/CT followed by TOF PET/MRI. PET/CT and PET/MRI images were evaluated by two readers independently for areas of FDG uptake compatible with malignancy, and then categorized into 5 groups (1: PET/MRI and PET/CT positive; 2: PET/MRI positive, PET/CT positive in retrospect; 3: PET/CT positive, PET/MRI positive in retrospect; 4: PET/MRI positive, PET/CT negative; 5: PET/MRI negative, PET/CT positive) by consensus.
Proc Natl Acad Sci U S A
December 2016
Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs.
View Article and Find Full Text PDFPurpose: As quantitative F-FDG PET numbers and pooling of results from different PET/CT scanners become more influential in the management of patients, it becomes imperative that we fully interrogate differences between scanners to fully understand the degree of scanner bias on the statistical power of studies.
Patients And Methods: Participants with body mass index (BMI) greater than 25, scheduled on a time-of-flight (TOF)-capable PET/CT scanner, had a consecutive scan on a non-TOF-capable PET/CT scanner and vice versa. SUVmean in various tissues and SUVmax of malignant lesions were measured from both scans, matched to each subject.
Purpose: An integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanner with time of flight (TOF) technology is now available for clinical use. The aim of this study is to evaluate the potential of TOF PET in PET/MRI to reduce artifacts in PET images when compared to non-TOF PET/MRI, TOF PET/X-ray computed tomography (CT), and non-TOF PET/CT.
Procedures: All patients underwent a single 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) injection, followed first by PET/CT, and subsequently by PET/MRI.
Purpose: To analyze the biodistribution of Ga-DOTA-TATE in the normal tissues and uptake in benign, indeterminate, and malignant lesions in a population of patients with known neuroendocrine tumors (NET) using semiquantitative standardized uptake values (SUV) measurements.
Methods: One hundred four consecutively scanned patients (51 men and 53 women; mean age, 56.4 years) with confirmed diagnosis of NET underwent PET/CT 1 hour after administration of Ga-DOTA-TATE.
Unlabelled: Glu-NH-CO-NH-Lys-(Ahx)-[(68)Ga(HBED-CC)] ((68)Ga-PSMA-11) is a PET tracer that can detect prostate cancer relapses and metastases by binding to the extracellular domain of PSMA. (68)Ga-labeled DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ((68)Ga-RM2) is a synthetic bombesin receptor antagonist that targets gastrin-releasing peptide receptors. We present pilot data on the biodistribution of these PET tracers in a small cohort of patients with biochemically recurrent prostate cancer.
View Article and Find Full Text PDFPurpose: We report the effect of antiangiogenic therapy on the biodistribution of (18)F-FPPRGD2 (a surrogate biomarker of integrin αvβ3 expression), and the potential of (18)F-FPPRGD2 to predict the prognosis in patients with cervical cancer and ovarian cancer in this clinical scenario.
Methods: Data from six women, age range 30 - 59 years (mean ± SD 44.0 ± 12.
Unlabelled: We prospectively evaluated the use of combined (18)F-NaF/(18)F-FDG PET/CT in patients with breast and prostate cancer and compared the results with those for (99m)Tc-MDP bone scintigraphy and whole-body MRI.
Methods: Thirty patients (15 women with breast cancer and 15 men with prostate cancer) referred for standard-of-care bone scintigraphy were prospectively enrolled in this study. (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI were performed after bone scintigraphy.
Eur J Nucl Med Mol Imaging
November 2015
Purpose: The aim of this study was to investigate the biodistribution of 2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) ((18)F-FPPRGD2) in cancer patients and to compare its uptake in malignant lesions with (18)F-FDG uptake.
Methods: A total of 35 patients (11 men, 24 women, mean age 52.1 ± 10.
Unlabelled: In this study, we evaluated the biodistribution of the (18)F(-)/(18)F-FDG administration, compared with separate (18)F-NaF and (18)F-FDG administrations. We also estimated the interaction of (18)F-NaF and (18)F-FDG in the (18)F(-)/(18)F-FDG administration by semiquantitative analysis.
Methods: We retrospectively analyzed the data of 49 patients (39 men, 10 women; mean age ± SD, 59.
Purpose: The purpose of this study was to analyze the distribution of 18F Sodium Fluoride (18F-NaF) uptake in the normal skeleton, benign and malignant bone lesions, and extraskeletal tissues, using semiquantitative SUV measurements.
Patients And Methods: We retrospectively analyzed data from 129 patients who had 18F-NaF PET/CT at our institution for an oncological diagnosis between 2007 and 2014. There were 99 men and 30 women, 19 to 90 years old (mean [SD], 61.
Purpose: The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF.
View Article and Find Full Text PDFIntroduction: Circulating tumor microemboli (CTM) are potentially important cancer biomarkers, but using them for cancer detection in early-stage disease has been assay limited. We examined CTM test performance using a sensitive detection platform to identify stage I non-small-cell lung cancer (NSCLC) patients undergoing imaging evaluation.
Methods: First, we prospectively enrolled patients during 18F-FDG PET-CT imaging evaluation for lung cancer that underwent routine phlebotomy where CTM and circulating tumor cells (CTCs) were identified in blood using nuclear (DAPI), cytokeratin (CK), and CD45 immune-fluorescent antibodies followed by morphologic identification.