Publications by authors named "Mehran Bagheri"

Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" important for regulation. For the mitochondrial fission dynamin, dynamin-related protein 1, a regulatory role for the variable domain (VD) is demonstrated by gain- and loss-of-function mutations, yet the basis for this is unclear. Here, the isolated VD is shown to be intrinsically disordered and undergo a cooperative transition in the stabilizing osmolyte trimethylamine N-oxide.

View Article and Find Full Text PDF

Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" (VD) important for regulation. For the mitochondrial fission dynamin, Drp1, a regulatory role for the VD is demonstrated by mutations that can elongate, or fragment, mitochondria. How the VD encodes inhibitory and stimulatory activity is unclear.

View Article and Find Full Text PDF

We report the design and characterization of a de novo electrogelation protein comprising a central spider silk glue motif flanked by terminal pH-triggered coiled-coil domains. The coiled-coiled domains were designed to form intramolecular helix bundles below a sharply defined pH-trigger point (∼pH 5.3), whereas the spider silk glue protein, because of its substantial Glu content, serves both as an anionic electrophoretic transport element at neutral and elevated pH and as a disordered linker chain between the associated helix bundles at reduced pH.

View Article and Find Full Text PDF

Native silk fibers exhibit strength and toughness that rival those of the best synthetic fibers. Despite significant research, further insight is still needed to understand the mechanisms by which silkworms are capable of spinning such tough fibers. Here we propose that π-π and π-OH group interactions of tyrosine side chains provide templating effects, such that the crystal-forming domains are in registration, thereby fostering the self-assembly of the spinning dope.

View Article and Find Full Text PDF