Existing Ni heavy metal ions in an aqueous medium are highly hazardous for living organisms and humans. Therefore, designing low-cost adsorbents with enhanced effectiveness is essential for removing nickel ions to safeguard public health. In this study, a novel green nanocomposite hydrogel was synthesized through the free radical solution and bulk polymerization method, and its capability to remove divalent nickel ions from aqueous media was examined.
View Article and Find Full Text PDFA novel magnetic adsorbent based on hydrolyzed Luffa Cylindrica (HLC) was synthesized through the chemical co-precipitation technique, and its potential was evaluated in the adsorptive elimination of divalent nickel ions from water medium. Morphological assessment and properties of the adsorbent were performed using FTIR, SEM, EDX, XRD, BET, and TEM techniques. The effect of pH, temperature, time and nickel concentration on the removal efficiency was studied, and pH = 6, room temperature (25 °C), contact time of 60 min, and Ni ion concentration of 10 mg.
View Article and Find Full Text PDF