A technique is described to create a virtual 3-dimensional representation of an edentulous patient by aligning the facial, intraoral, and cone beam computed tomography scans guided by an additively manufactured scan body. Having the virtual patient facilitated the prosthetically driven implant planning, the additive manufacturing of the surgical implant guides, and the interim dental restorations.
View Article and Find Full Text PDFStatement Of Problem: Vat-polymerized casts can be designed with different bases, but the influence of the base design on the accuracy of the casts remains unclear.
Purpose: The purpose of the present in vitro study was to evaluate the influence of various base designs (solid, honeycombed, and hollow) with 2 different wall thicknesses (1 mm and 2 mm) on the accuracy of vat-polymerized diagnostic casts.
Material And Methods: A virtual maxillary cast was obtained and used to create 3 different base designs: solid (S group), honeycombed (HC group), and hollow (H group).
A technique to additively manufacture an occlusal device by using a completely digital workflow is described. Using a computer-aided design program, information captured with an intraoral scanner was used to additively manufacture a dual-material occlusal device by using a vat-polymerization printer. This technique allows for the combination of 2 different materials, resulting in an occlusal device with a resilient intaglio and a hard resin exterior surface.
View Article and Find Full Text PDFPurpose: To review the primary additive manufacturing (AM) technologies used to fabricate metals in implant dentistry and compare them to conventional casting and subtractive methods.
Methods: The literature on metal AM technologies was reviewed, and the AM procedures and their current applications in implant dentistry were collated and described. Collection of published articles about metal AM in dental field data sources: MEDLINE, EMBASE, EBSCO, and Web of Science searched.
Statement Of Problem: Digital scans should be able to accurately reproduce the different complex geometries of the patient's mouth. Mesh quality of the digitized mouth is an important factor that influences the capabilities of the geometry reproduction of an intraoral scanner (IOS). However, the mesh quality capabilities of IOSs and the relationship with different ambient light scanning conditions are unclear.
View Article and Find Full Text PDFStatement Of Problem: Digital scans have increasingly become an alternative to conventional impressions. Although previous studies have analyzed the accuracy of the available intraoral scanners (IOSs), the effect of the light scanning conditions on the accuracy of those IOS systems remains unclear.
Purpose: The purpose of this in vitro study was to measure the impact of lighting conditions on the accuracy (trueness and precision) of different IOSs.
Polymer additive manufacturing (AM) technologies have been incorporated in digital workflows within implant dentistry. This article reviews the main polymer AM technologies in implant dentistry, as well as their applications in the field such as manufacturing surgical guides, custom trays, working implant casts, and provisional restorations.
View Article and Find Full Text PDF