Publications by authors named "Mehrab Fallahi-Samberan"

Thermoplastic polymers are one of the synthetic materials produced with high tonnage in the world and are so omnipresent in industries and everyday life. One of the most important polymeric wastes is polyethylene terephthalate (PET), and the disposal of used PET bottles is an unsolved environmental problem, and many efforts have been made to find practical solutions to solve it. In this present work, nanofibrous membranes were produced from waste PET bottles using the electrospinning process.

View Article and Find Full Text PDF

In this study, nanofibers of poly (acrylic acid) (PAAc), polyacrylamide (PAAm) and poly (vinyl alcohol) (PVOH) were prepared using the electrospinning technique. Based on the Taguchi DOE (design of experiment) method, the effects of electrospinning parameters, i.e.

View Article and Find Full Text PDF

In this paper, novel microgels containing nano-SiO were prepared by in situ copolymerization using nano-SiO particles as a reinforcing agent, nanosilica functional monomer (silane-modified nano-SiO) as a structure and morphology director, acrylamide (AAm) as a monomer, acrylic acid (AAc) as a comonomer, potassium persulfate (KPS) as a polymerization initiator, and N,N'-methylene bis (acrylamide) (MBA) as a crosslinker. In addition, a conventional copolymeric hydrogel based on poly (acrylamide/acrylic acid) was synthesized by solution polymerization. The microgel samples, hydrogel and nanoparticles were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

The effect of SiO nanoparticles on the formation of PAA (poly acrylic acid) gel structure was investigated with seeded emulsion polymerization method used to prepare SiO/PAA nanoparticles. The morphologies of the nanocomposite nanoparticles were studied by transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy results indicated that the PAA was chemically bonded to the surface of the SiO nanoparticles.

View Article and Find Full Text PDF