The current study describes preliminary findings from the Xavier University of Louisiana Mobile Outreach for Laboratory Enrichment (XULA-MOLE) project, which is a collaboration between Xavier University of Louisiana (XULA), a Historically Black and Catholic University, and participating 9th-12th grade classrooms in the central New Orleans area with a historically underserved student population. The project described here is geared toward providing laboratory enrichment to enhance student learning and impact student career interest in STEM fields, especially in classrooms with a much-needed "hands-on" laboratory experience which is unavailable due to a lack of resources. In this case study, we will present and discuss the inquiry-based laboratory modules for the topic area of acids and bases.
View Article and Find Full Text PDFBase-pair-driven toehold-mediated strand displacement (BP-TMSD) is a fundamental concept employed for constructing DNA machines and networks with a gamut of applications─from theranostics to computational devices. To broaden the toolbox of dynamic DNA chemistry, herein, we introduce a synthetic surrogate termed host-guest-driven toehold-mediated strand displacement (HG-TMSD) that utilizes bioorthogonal, cucurbit[7]uril (CB[7]) interactions with guest-linked input sequences. Since control of the strand-displacement process is salient, we demonstrate how HG-TMSD can be finely modulated via changes to the structure of the input sequence (including synthetic guest head-group and/or linker length).
View Article and Find Full Text PDFPoint-of-care systems require highly sensitive, quantitative and selective detection platforms for the real-time multiplexed monitoring of target analytes. To ensure facile development of a sensor, it is preferable for the detection assay to have minimal chemical complexity, contain no wash steps and provide a wide and easily adaptable detection range for multiple targets. Current studies involve label-free detection strategy for relevant clinical molecules such as heme using G-quadruplex based self-assembly.
View Article and Find Full Text PDFWe report on a competitive electrochemical detection system that is free of wash steps and enables the real-time monitoring of adenosine triphosphate (ATP) in a quantitative manner over a five-log concentration range. The system utilizes a recognition surface based on ATP aptamer (ATPA) capture probes prebound to electroactive flavin adenine dinucleotide (FAD) molecules, and a signaling surface utilizing graphene (Gr) and gold nanoparticle (AuNP) modified carbon paste electrode (Gr-AuNP-CPE) that is optimized to enhance electron-transfer kinetics and signal sensitivity. Binding of ATP to ATPA at the recognition surface causes the release of an equivalent concentration of FAD that can be quantitatively monitored in real time at the signaling surface, thereby enabling a wide linear working range (1.
View Article and Find Full Text PDFAptamer based ATP binding leads to the release of the co-factor FAD, which acts as a trigger to 'turn-on' the activity of apo-GOx and thus generates a measurable response.
View Article and Find Full Text PDFPorous agarose microbeads, with high surface to volume ratios and high binding densities, are attracting attention as highly sensitive, affordable sensor elements for a variety of high performance bioassays. While such polymer microspheres have been extensively studied and reported on previously and are now moving into real-world clinical practice, very little work has been completed to date to model the convection, diffusion, and binding kinetics of soluble reagents captured within such fibrous networks. Here, we report the development of a three-dimensional computational model and provide the initial evidence for its agreement with experimental outcomes derived from the capture and detection of representative protein and genetic biomolecules in 290 μm porous beads.
View Article and Find Full Text PDFThe slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose "nanonets" that populate a microelectromechanical support structure with integrated microfluidic elements.
View Article and Find Full Text PDFThe synthesis of an isoamethyrin derivative containing two CH(2)CH(2)CO(2)CH(3) moieties in the beta-pyrrolic positions and its use in the colorimetric detection of the uranyl cation after immobilization onto a solid support is reported.
View Article and Find Full Text PDFJ Microelectromech Syst
February 2006
This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for "regional velocity control." Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 degrees C), hybridization (60 degrees C), and extension (72 degrees C) temperature zones within the microchip.
View Article and Find Full Text PDFThis paper presents disposable protein analysis chips with single- or four-chamber-constructed from poly(dimethylsiloxane) (PDMS) and silicon. The chips are composed of a multilayer stack of PDMS layers that sandwich a silicon microchip. This inner silicon chip features an etched array of micro-cavities hosting polymeric beads.
View Article and Find Full Text PDFIn the last decade, saliva has been advocated as a non-invasive alternative to blood as a diagnostic fluid. However, use of saliva has been hindered by the inadequate sensitivity of current methods to detect the lower salivary concentrations of many constituents compared to serum. Furthermore, developments in the areas related to lab-on-a-chip systems for saliva-based point of care diagnostics are complicated by the high viscosity and heterogeneous properties associated with this diagnostic fluid.
View Article and Find Full Text PDFThe development of a chip-based sensor array composed of individually addressable agarose microbeads has been demonstrated for the rapid detection of DNA oligonucleotides. Here, a "plug and play" approach allows for the simple incorporation of various biotinylated DNA capture probes into the bead-microreactors, which are derivatized in each case with avidin docking sites. The DNA capture probe containing microbeads are selectively arranged in micromachined cavities localized on silicon wafers.
View Article and Find Full Text PDF