Publications by authors named "Mehmet Z Baykara"

Using atomic force microscopy experiments and molecular dynamics simulations of gold nanoislands on graphite, we investigate why ultralow friction commonly associated with structural lubricity can be observed even under ambient conditions. Measurements conducted within a few days after sample synthesis reveal previously undiscovered phenomena in structurally lubric systems: , a drop in kinetic friction of an order of magnitude shortly after the onset of sliding; , a significant increase in kinetic friction forces after a rest period of 30 min or more; and , spontaneous jumps between distinct friction branches. These three effects are drastically suppressed a few weeks later.

View Article and Find Full Text PDF

Thin transition metal carbides (TMCs) garnered significant attention in recent years due to their attractive combination of mechanical and electrical properties with chemical and thermal stability. On the other hand, a complete picture of how defects affect the physical properties and application potential of this emerging class of materials is lacking. Here, we present an atomic-resolution study of defects on thin crystals of molybdenum carbide (α-MoC) grown via chemical vapor deposition (CVD) by way of conductive atomic force microscopy (C-AFM) measurements under ambient conditions.

View Article and Find Full Text PDF

A great number of chemical and mechanical phenomena, ranging from catalysis to friction, are dictated by the atomic-scale structure and properties of material surfaces. Yet, the principal tools utilized to characterize surfaces at the atomic level rely on strict environmental conditions such as ultrahigh vacuum and low temperature. Results obtained under such well-controlled, pristine conditions bear little relevance to the great majority of processes and applications that often occur under ambient conditions.

View Article and Find Full Text PDF

We present results of atomic-force-microscopy-based friction measurements on Re-doped molybdenum disulfide (MoS). In stark contrast to the widespread observation of decreasing friction with increasing number of layers on two-dimensional (2D) materials, friction on Re-doped MoSexhibits an anomalous, i.e.

View Article and Find Full Text PDF

is an opportunistic fungal pathogen of humans known for its ability to cause a wide range of infections. One major virulence factor of is its ability to form hyphae that can invade host tissues and cause disseminated infections. Here, we introduce a method based on atomic force microscopy to investigate hyphae on silicone elastomer substrates, focusing on the effects of temperature and antifungal drugs.

View Article and Find Full Text PDF

Bacterial biofilms are highly ordered, complex, dynamic material systems including cells, carbohydrates, and proteins. They are known to be resistant against chemical, physical, and biological disturbances. These superior properties make them promising candidates for next generation biomaterials.

View Article and Find Full Text PDF

Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000-130,000 nm(2)) interfaces formed by gold islands on graphite.

View Article and Find Full Text PDF

Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research.

View Article and Find Full Text PDF

A comprehensive analysis of contrast formation mechanisms in scanning tunneling microscopy (STM) experiments on a metal oxide surface is presented with the oxygen-induced (2√2×√2)R45° missing row reconstruction of the Cu(100) surface as a model system. Density functional theory and electronic transport calculations were combined to simulate the STM imaging behavior of pure and oxygen-contaminated metal tips with structurally and chemically different apexes while systematically varying bias voltage and tip-sample distance. The resulting multiparameter database of computed images was used to conduct an extensive comparison with experimental data.

View Article and Find Full Text PDF

Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts.

View Article and Find Full Text PDF

A non-contact atomic force microscopy-based method has been used to map the static lateral forces exerted on an atomically sharp Pt/Ir probe tip by a graphite surface. With measurements carried out at low temperatures and in the attractive regime, where the atomic sharpness of the tip can be maintained over extended time periods, the method allows the quantification and directional analysis of lateral forces with piconewton and picometer resolution as a function of both the in-plane tip position and the vertical tip-sample distance, without limitations due to a finite contact area or to stick-slip-related sudden jumps of tip apex atoms. After reviewing the measurement principle, the data obtained in this case study are utilized to illustrate the unique insight that the method offers.

View Article and Find Full Text PDF

Materials properties are ultimately determined by the nature of the interactions between the atoms that form the material. On surfaces, the site-specific spatial distribution of force and energy fields governs the phenomena encountered. This article reviews recent progress in the development of a measurement mode called three-dimensional atomic force microscopy (3D-AFM) that allows the dense, three-dimensional mapping of these surface fields with atomic resolution.

View Article and Find Full Text PDF

Data acquisition and analysis procedures for noncontact atomic force microscopy that allow the recording of dense three-dimensional (3D) surface force and energy fields with atomic resolution are presented. The main obstacles for producing high-quality 3D force maps are long acquisition times that lead to data sets being distorted by drift, and tip changes. Both problems are reduced but not eliminated by low-temperature operation.

View Article and Find Full Text PDF

Chemical forces on surfaces have a central role in numerous scientific and technological fields, including catalysis, thin film growth and tribology. Many applications require knowledge of the strength of these forces as a function of position in three dimensions, but until now such information has only been available from theory. Here, we demonstrate an approach based on atomic force microscopy that can obtain this data, and we use this approach to image the three-dimensional surface force field of graphite.

View Article and Find Full Text PDF

We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible.

View Article and Find Full Text PDF