Publications by authors named "Mehmet S Guzel"

This study focuses on the classification of six different macrofungi species using advanced deep learning techniques. Fungi species, such as , , , , and were chosen based on their ecological importance and distinct morphological characteristics. The research employed 5 different machine learning techniques and 12 deep learning models, including DenseNet121, MobileNetV2, ConvNeXt, EfficientNet, and swin transformers, to evaluate their performance in identifying fungi from images.

View Article and Find Full Text PDF

Background: Lung cancer is the leading cause of cancer-related deaths worldwide, ranking first in men and second in women. Due to its aggressive nature, early detection and accurate localization of tumors are crucial for improving patient outcomes. This study aims to apply advanced deep learning techniques to identify lung cancer in its early stages using CT scan images.

View Article and Find Full Text PDF

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis.

View Article and Find Full Text PDF

Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors.

View Article and Find Full Text PDF

Pressure ulcers are a common, painful, costly, and often preventable complication associated with prolonged immobility in bedridden patients. It is a significant health problem worldwide because it is frequently seen in inpatients and has high treatment costs. For the treatment to be effective and to ensure an international standardization for all patients, it is essential that the diagnosis of pressure ulcers is made in the early stages and correctly.

View Article and Find Full Text PDF

Human microbiota refers to the trillions of microorganisms that inhabit our bodies and have been discovered to have a substantial impact on human health and disease. By sampling the microbiota, it is possible to generate massive quantities of data for analysis using Machine Learning algorithms. In this study, we employed several modern Machine Learning techniques to predict Inflammatory Bowel Disease using raw sequence data.

View Article and Find Full Text PDF

Today, with rapid advances in technology, computer-based studies and Artificial Intelligence (AI) approaches are finding their place in every field, especially in the medical sector, where they attract great attention. The Temporomandibular Joint (TMJ) stands as the most intricate joint within the human body, and diseases related to this joint are quite common. In this paper, we reviewed studies that utilize AI-based algorithms and computer-aided programs for investigating TMJ and TMJ-related diseases.

View Article and Find Full Text PDF

Deep learning and diagnostic applications in oral and dental health have received significant attention recently. In this review, studies applying deep learning to diagnose anomalies and diseases in dental image material were systematically compiled, and their datasets, methodologies, test processes, explainable artificial intelligence methods, and findings were analyzed. Tests and results in studies involving human-artificial intelligence comparisons are discussed in detail to draw attention to the clinical importance of deep learning.

View Article and Find Full Text PDF

Data from omics studies have been used for prediction and classification of various diseases in biomedical and bioinformatics research. In recent years, Machine Learning (ML) algorithms have been used in many different fields related to healthcare systems, especially for disease prediction and classification tasks. Integration of molecular omics data with ML algorithms has offered a great opportunity to evaluate clinical data.

View Article and Find Full Text PDF

Background: Pedodontists and general practitioners may need support in planning the early orthodontic treatment of patients with mixed dentition, especially in borderline cases. The use of machine learning algorithms is required to be able to consistently make treatment decisions for such cases.

Objective: This study aimed to use machine learning algorithms to facilitate the process of deciding whether to choose serial extraction or expansion of maxillary and mandibular dental arches for early treatment of borderline patients suffering from moderate to severe crowding.

View Article and Find Full Text PDF

Endoscopic procedures for diagnosing gastrointestinal tract findings depend on specialist experience and inter-observer variability. This variability can cause minor lesions to be missed and prevent early diagnosis. In this study, deep learning-based hybrid stacking ensemble modeling has been proposed for detecting and classifying gastrointestinal system findings, aiming at early diagnosis with high accuracy and sensitive measurements and saving workload to help the specialist and objectivity in endoscopic diagnosis.

View Article and Find Full Text PDF

Artificial Intelligence has guided technological progress in recent years; it has shown significant development with increased academic studies on Machine Learning and the high demand for this field in the sector. In addition to the advancement of technology day by day, the pandemic, which has become a part of our lives since early 2020, has led to social media occupying a larger place in the lives of individuals. Therefore, social media posts have become an excellent data source for the field of sentiment analysis.

View Article and Find Full Text PDF

It is necessary to know the manufacturer and model of a previously implanted shoulder prosthesis before performing Total Shoulder Arthroplasty operations, which may need to be performed repeatedly in accordance with the need for repair or replacement. In cases where the patient’s previous records cannot be found, where the records are not clear, or the surgery was conducted abroad, the specialist should identify the implant manufacturer and model during preoperative X-ray controls. In this study, an auxiliary expert system is proposed for classifying manufacturers of shoulder implants on the basis of X-ray images that is automated, objective, and based on hybrid machine learning models.

View Article and Find Full Text PDF

Purpose: In this study, the required dose rates for optimal treatment of tumoral tissues when using proton therapy in the treatment of defective tumours seen in mandibles has been calculated. We aimed to protect the surrounding soft and hard tissues from unnecessary radiation as well as to prevent complications of radiation. Bragg curves of therapeutic energized protons for two different mandible (molar and premolar) plate phantoms were computed and compared with similar calculations in the literature.

View Article and Find Full Text PDF

This paper proposes a novel data classification framework, combining sparse auto-encoders (SAEs) and a post-processing system consisting of a linear system model relying on Particle Swarm Optimization (PSO) algorithm. All the sensitive and high-level features are extracted by using the first auto-encoder which is wired to the second auto-encoder, followed by a Softmax function layer to classify the extracted features obtained from the second layer. The two auto-encoders and the Softmax classifier are stacked in order to be trained in a supervised approach using the well-known backpropagation algorithm to enhance the performance of the neural network.

View Article and Find Full Text PDF