Transition metal dichalcogenides (TMDs) exhibit a wide range of electronic properties due to their structural diversity. Understanding their defect-dependent properties might enable the design of efficient, bright, and long-lifetime quantum emitters. Here, we use density functional theory (DFT) calculations to investigate the 2H, 1T, and 1T' phases of MoS, WS, MoSe, WSe and the effect of defect densities on the electronic band structures, focusing on the influence of chalcogen vacancies.
View Article and Find Full Text PDFNanoscale skyrmions are spin-based quasiparticles that are promising for nonvolatile logic applications. However, the presence of the skyrmion Hall effect (SkHE) in ferromagnetic skyrmions limits their performance in logic devices. Here, we present a detailed micromagnetic modeling study on low-energy skyrmion logic gate circuits based on skyrmions in synthetic antiferromagnetically coupled (SAF) metallic ferromagnetic layers to eliminate the SkHE while reducing current requirements.
View Article and Find Full Text PDFSynthetic antiferromagnetically coupled (SAF) multilayers provide different physics of stabilizing skyrmions while eliminating the topological Hall effect (THE), enabling efficient and stable control. The effects of material parameters, external current drive, and a magnetic field on the skyrmion equilibrium and propagation characteristics are largely unresolved. Here, we present a computational and theoretical demonstration of the large window of material parameters that stabilize SAF skyrmions determined by saturation magnetization, uniaxial anisotropy, and Dzyaloshinskii-Moriya interaction.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e.
View Article and Find Full Text PDFCivil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment.
View Article and Find Full Text PDFThese data include detailed calculations and graphs based on our manuscript submitted to Journal of Magnetism and Magnetic Materials, entitled "Predicting New Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy". These data are organized in two parts; first, we present the calculated plots of sensitivity of magnetic anisotropy field and anisotropy energy density for 49 epitaxial rare earth iron garnet (REIG) film/substrate pairs (a total of 98 plots, Figs. 1-15).
View Article and Find Full Text PDFSkyrmions offer high density, low power, and nonvolatile memory functionalities due to their nanoscale and topologically-protected chiral spin structures. For integrated high-bandwidth devices, one needs to control skyrmion generation and propagation rates using current. Here, we introduce a skyrmion initialization and control method to generate periodic skyrmions from 114 MHz to 21 GHz using spin-polarized direct current.
View Article and Find Full Text PDFMagnetooptical spatial light modulators (MOSLMs) are photonic devices that encode information in photonic waveforms by changing their amplitude and phase using magnetooptical Faraday or Kerr rotation. Despite the progress on both MO materials and switching methods, significant improvements on materials engineering and SLM design are needed for demonstrating low-power, multicolor, analog and high-contrast MOSLM devices. In this study, we present design rules and example designs for a high-contrast and large figure-of-merit MOSLM using three-color magnetophotonic crystals (MPC).
View Article and Find Full Text PDFA surfactant-less, seed mediated, biological synthesis of two dimensional (2-D) nanoribbons in the presence of breast cancer cells (MCF7) is demonstrated. The diameter and yield of nanoribbons are tunable via seeds and gold precursor concentration. Such crystalline nanoribbons serve to enhance the Raman signals over MCF7 cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
Perovskite-structured SrTiCoO (STCo) films of varying thicknesses were grown on SrTiO(001) substrates using pulsed laser deposition. Thin films grow with a cube-on-cube epitaxy, but for films exceeding a critical thickness of about 120 nm, a double-epitaxial microstructure was observed, in which (110)-oriented crystals nucleated within the (001)-oriented STCo matrix, both orientations being epitaxial with the substrate. The crystal structure, strain state, and magnetic properties are described as a function of film thickness.
View Article and Find Full Text PDFThe spin chemical potential characterizes the tendency of spins to diffuse. Probing this quantity could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here we introduce single-spin magnetometry as a generic platform for nonperturbative, nanoscale characterization of spin chemical potentials.
View Article and Find Full Text PDFThe spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive.
View Article and Find Full Text PDFPlexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer.
View Article and Find Full Text PDFMagneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition.
View Article and Find Full Text PDFManipulating magnetism by electric current is of great interest for both fundamental and technological reasons. Much effort has been dedicated to spin-orbit torques (SOTs) in metallic structures, while quantitative investigation of analogous phenomena in magnetic insulators remains challenging due to their low electrical conductivity. Here we address this challenge by exploiting the interaction of light with magnetic order, to directly measure SOTs in both metallic and insulating structures.
View Article and Find Full Text PDFWe investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50 μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters.
View Article and Find Full Text PDFCobalt-substituted SrTiO3 films (SrTi0.70Co0.30O(3-δ)) were grown on SrTiO3 substrates using pulsed laser deposition under oxygen pressures ranging from 1 μTorr to 20 mTorr.
View Article and Find Full Text PDFTwo-phase nanocomposite films consisting of metallic Co nanoparticles below 50 nm diameter in a perovskite matrix were grown by pulsed laser deposition onto (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) and silicon substrates from a target of SrGa0.
View Article and Find Full Text PDFCerium substituted yttrium iron garnet (Ce:YIG) films were grown on yttrium iron garnet (YIG) seed layers on silicon nitride films using pulsed laser deposition. Optimal process conditions for forming garnet films on silicon nitride are presented. Bulk or near-bulk magnetic and magneto-optical properties were observed for 160 nm thick Ce:YIG films grown at 640 °C on rapid thermal annealed 40 nm thick YIG grown at 640 °C and 2 Hz pulse rate.
View Article and Find Full Text PDFVacuum annealed polycrystalline cerium substituted yttrium iron garnet (CeYIG) films deposited by radio frequency magnetron sputtering on non-garnet substrates were used in nonreciprocal racetrack resonators. CeYIG annealed at 800°C for 30 min provided a large Faraday rotation angle, close to the single crystal value. Crystallinity, magnetic properties, refractive indices and absorption coefficients were measured.
View Article and Find Full Text PDFIntroducing magnetic order in a topological insulator (TI) breaks time-reversal symmetry of the surface states and can thus yield a variety of interesting physics and promises for novel spintronic devices. To date, however, magnetic effects in TIs have been demonstrated only at temperatures far below those needed for practical applications. In this work, we study the magnetic properties of Bi2Se3 surface states (SS) in the proximity of a high Tc ferrimagnetic insulator (FMI), yttrium iron garnet (YIG or Y3Fe5O12).
View Article and Find Full Text PDFAchieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon.
View Article and Find Full Text PDF