Lowering intraocular pressure (IOP) by placement of a glaucoma shunt is an effective treatment for glaucoma. However, fibrosis of the outflow site can hamper surgical outcome. In this study, the antifibrotic effect of adding an endplate (with or without microstructured surface topographies) to a microshunt made of poly(styrene-block-isobutylene-block-styrene) is investigated.
View Article and Find Full Text PDFCells probe their environment and adapt their shape accordingly the organization of focal adhesions and the actin cytoskeleton. In an earlier publication, we described the relationship between cell shape and physiology, for example, shape-induced differentiation, metabolism, and proliferation in mesenchymal stem cells and tenocytes. In this study, we investigated how these cells organize their adhesive machinery over time when exposed to microfabricated surfaces of different topographies and adhesive island geometries.
View Article and Find Full Text PDFThe fabrication of a flexible supercapacitor with state-of-the-art performance is described, based on a facile and low-cost fabrication method that encompasses aligned carbon nanotube arrays (ACNTA)-polyaniline/polydimethylsiloxane electrodes (ACNTA-PANI/PDMS). The ACNTA were partially embedded in PDMS to ensure excellent adhesion and integration whilst PANI was electrodeposited on its surface to improve energy storage properties. The supercapacitor structure and morphology were investigated by Raman spectroscopy and scanning electron microscopy (SEM), respectively.
View Article and Find Full Text PDFPurpose: Esthetic expectations have increased the use of polyetheretherketone (PEEK) clasps as alternatives to Cr-Co in removable partial dentures (RPDs). The objective of this study was to evaluate the retentive force and dimensional change of clasps with different thickness and undercut made from PEEK by the thermo-mechanical fatigue.
Materials And Methods: PEEK clasps (N = 48) with thicknesses of 1 or 1.
In recent years, organic electronic materials have been shown to be a promising tool, even transplanted in vivo, for transducing light stimuli to non-functioning retinas. Here we developed a bio-hybrid optoelectronic device consisting of patterned organic polymer semiconductors interfaced with an electrolyte solution in a closed sandwich architecture in order to study the photo-response of photosensitive semiconducting layers or patterns in an environment imitating biological extracellular fluids. We demonstrate an artificial retina model composed of on an array of 42,100 pixels made of three different conjugated polymers via inkjet printing with 110 pixels/mm packing density.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing.
View Article and Find Full Text PDFRecent interest in the fields of human motion monitoring, electronic skin, and human-machine interface technology demands strain sensors with high stretchability/compressibility (ε > 50%), high sensitivity (or gauge factor (GF > 100)), and long-lasting electromechanical compliance. However, current metal- and semiconductor-based strain sensors have very low (ε < 5%) stretchability or low sensitivity (GF < 2), typically sacrificing the stretchability for high sensitivity. Composite elastomer sensors are a solution where the challenge is to improve the sensitivity to GF > 100.
View Article and Find Full Text PDF