The rapid and reliable diagnosis of anaerobic bacteria constitutes one of the key procedures in clinical microbiology. Automatic jar gassing systems are commonly used laboratory instruments for this purpose. The most critical factors affecting the cultivation performance of these systems are the level of residual oxygen remaining in the anaerobic jar and the reaction rate determined by the Pd/AlO catalyst.
View Article and Find Full Text PDFPeriodontal diseases, if untreated, can cause gum recession and tooth root exposure, resulting in infection and irreversible damage. Traditional treatments using autologous grafts are painful and often result in postoperative complications. Scaffolds offer a less invasive alternative, promoting cell proliferation and healing without additional surgery, thus enhancing comfort for patients and doctors.
View Article and Find Full Text PDFA middle ear infection occurs due to the presence of several microorganisms behind the eardrum (tympanic membrane) and is very challenging to treat due to its unique location and requires a well-designed treatment. If not treated properly, the infection can result in severe symptoms and unavoidable side effects. In this study, excellent biocompatible ethyl cellulose (EC) and biodegradable polyhydroxybutyrate (PHB) biopolymer were used to fabricate drug-loaded nanofiber scaffolds using an electrospinning technique to overcome antibiotic overdose and insufficient efficacy of drug release during treatment.
View Article and Find Full Text PDFThe polymeric nanofiber may interact and control certain regeneration processes at the molecular level to repair damaged tissues. This research focuses on the development of characterization and antibacterial capabilities of polyvinyl alcohol (PVA)/chitosan (CS) nanofibres containing fucoidan (FUC) for tissue engineering as a skin tissue substitute. A control group consisting of 13% PVA/(0.
View Article and Find Full Text PDFIn this study, novel fibers were designed based on ethylcellulose (EC), loaded with different concentrations of gallic acid (GA) using the electrospinning technique, in order to investigate the potential of these materials as wound dressings. The chemical structure and morphology, along with the antimicrobial and biocompatibility tests of the EC_GA fibers were investigated. To observe the chemical interactions between the components, fourier transform infrared spectroscopy (FTIR) was used.
View Article and Find Full Text PDFBackground: A rapid and reliable diagnostic test is needed to reduce mortality through early diagnosis of invasive aspergillosis (IA) in patients with hematological malignancies.
Objective: To evaluate the efficacy of serum and bronchoalveolar lavage (BAL) Aspergillus galactomannan lateral flow assay (GM-LFA) in IA diagnosis and determine the correlation of GM-LFA with GM enzyme immunoassay (GM-EIA) in patients with hematological malignancies.
Methods: In this prospective multicenter study, we used serum and BAL fluid samples from patients with hematological malignancies and suspected IA and performed GM-LFA and GM-EIA.
In this research, as an alternative to chemical and physical methods, environmentally and cost-effective antimicrobial zinc oxide nanoparticles (ZnO NP) were produced by the green synthesis method. The current study focuses on the production of ZnO NP starting from adequate precursor and aqueous root extracts (ginger). The produced ZnO NP was loaded into electrospun nanofibers at different concentrations for various tissue engineering applications such as wound dressings.
View Article and Find Full Text PDFIn this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (/) of Ps was added to the solution.
View Article and Find Full Text PDFAim: Studies analyzing viral load in COVID-19 patients and any data that compare viral load with chest computerized tomography (CT) severity are limited. This study aimed to evaluate the severity of chest CT in reverse transcriptase polymerase chain reaction (RT-PCR)-positive patients and factors associated with it.
Methodology: SARS-CoV-2 RNA was extracted from nasopharyngeal swab samples by using Bio-speedy viral nucleic acid buffer.
Acute wounds are a common health problem, with millions of people affected and decreased granulation tissue formation and vascularization, it is also a big challenge for wound care researchers to promote acute wound healing around the globe. This study aims to produce and characterize Satureja cuneifolia plant extract (SC)-blended with sodium alginate (SA) /polyethylene glycol (PEG) scaffolds for the potential treatment of diabetic ulcer. SA/PEG scaffolds were prepared by adding different concentrations (1, 3, and 5 wt%) of PEG to 9 wt% SA.
View Article and Find Full Text PDF