Tissue-engineered vascular conduits (TEVCs), often made by seeding autologous bone marrow cells onto biodegradable polymeric scaffolds, hold promise toward treating single-ventricle congenital heart defects (SVCHDs). However, the clinical adoption of TEVCs has been hindered by a high incidence of graft stenosis in prior TEVC clinical trials. Herein, we developed endothelialized TEVCs by coating the luminal surface of decellularized human umbilical arteries with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs), followed by shear stress training, in flow bioreactors.
View Article and Find Full Text PDFCardiovascular defects, injuries, and degenerative diseases often require surgical intervention and the use of implantable replacement material and conduits. Traditional vascular grafts made of synthetic polymers, animal and cadaveric tissues, or autologous vasculature have been utilized for almost a century with well-characterized outcomes, leaving areas of unmet need for the patients in terms of durability and long-term patency, susceptibility to infection, immunogenicity associated with the risk of rejection, and inflammation and mechanical failure. Research to address these limitations is exploring avenues as diverse as gene therapy, cell therapy, cell reprogramming, and bioengineering of human tissue and replacement organs.
View Article and Find Full Text PDFMicroglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2021
The development of an system for the study of lung vascular disease is critical to understanding human pathologies. Conventional culture systems fail to fully recapitulate native microenvironmental conditions and are typically limited in their ability to represent human pathophysiology for the study of disease and drug mechanisms. Whole organ decellularization provides a means to developing a construct that recapitulates structural, mechanical, and biological features of a complete vascular structure.
View Article and Find Full Text PDFTransplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments.
View Article and Find Full Text PDFConventional in vitro methods for biological evaluation of intra-arterial devices such as stents fail to accurately predict cytotoxicity and remodeling events. An ex vivo flow-tunable vascular bioreactor system (VesselBRx), comprising intra- and extra-luminal monitoring capabilities, addresses these limitations. VesselBRx mimics the in vivo physiological, hyperplastic, and cytocompatibility events of absorbable magnesium (Mg)-based stents in ex vivo stent-treated porcine and human coronary arteries, with in-situ and real-time monitoring of local stent degradation effects.
View Article and Find Full Text PDFTissue engineered vascular grafts (TEVGs) represent a promising therapeutic option for emergency vascular intervention. Although the application of small-diameter TEVGs using patient-specific primary endothelial cells (ECs) to prevent thrombosis and occlusion prior to implantation could be hindered by the long time course required for in vitro endothelialization, human induced pluripotent stem cells (hiPSCs) provide a robust source to derive immunocompatible ECs (hiPSC-ECs) for immediate TEVG endothelialization. To achieve clinical application, hiPSC-ECs should be derived under culture conditions without the use of animal-derived reagents (xenogeneic-free conditions), to avoid unwanted host immune responses from xenogeneic reagents.
View Article and Find Full Text PDFDevelopment of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established.
View Article and Find Full Text PDFVascular smooth muscle cells (VSMCs) can be derived in large numbers from human induced pluripotent stem cells (hiPSCs) for producing tissue-engineered vascular grafts (TEVGs). However, hiPSC-derived TEVGs are hampered by low mechanical strength and significant radial dilation after implantation. Here, we report generation of hiPSC-derived TEVGs with mechanical strength comparable to native vessels used in arterial bypass grafts by utilizing biodegradable scaffolds, incremental pulsatile stretching, and optimal culture conditions.
View Article and Find Full Text PDFHuman cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2).
View Article and Find Full Text PDFMetallic stents cause vascular wall damage with subsequent smooth muscle cell (SMC) proliferation, neointimal hyperplasia, and treatment failure. To combat in-stent restenosis, drug-eluting stents (DES) delivering mTOR inhibitors such as sirolimus or everolimus have become standard for coronary stenting. However, the relatively non-specific action of mTOR inhibitors prevents efficient endothelium recovery and mandates dual antiplatelet therapy to prevent thrombosis.
View Article and Find Full Text PDFObjective: Invasive coronary interventions can fail due to intimal hyperplasia and restenosis. Endothelial cell (EC) seeding to the vessel lumen, accelerating re-endothelialization, or local release of mTOR pathway inhibitors have helped reduce intimal hyperplasia after vessel injury. While animal models are powerful tools, they are complex and expensive, and not always reflective of human physiology.
View Article and Find Full Text PDFVascularization of engineered bone tissue is critical for ensuring its survival after implantation. In vitro pre-vascularization of bone grafts with endothelial cells is a promising strategy to improve implant survival. In this study, we pre-cultured human smooth muscle cells (hSMCs) on bone scaffolds for 3 weeks followed by seeding of human umbilical vein endothelial cells (HUVECs), which produced a desirable environment for microvasculature formation.
View Article and Find Full Text PDFHere we report the creation of a novel tracheal construct in the form of an engineered, acellular tissue-stent biocomposite trachea (TSBT). Allogeneic or xenogeneic smooth muscle cells are cultured on polyglycolic acid polymer-metal stent scaffold leading to the formation of a tissue comprising cells, their deposited collagenous matrix, and the stent material. Thorough decellularization then produces a final acellular tubular construct.
View Article and Find Full Text PDFUnlabelled: Myofibroblasts are critical for connective tissue remodeling and wound healing since they can close wound beds and shape tissues rapidly by generating high traction forces and secreting abundant extracellular matrix proteins and matrix metalloproteinases. However, their presence in excessive numbers is associated with fibrotic and calcific diseases and tissue thickening in engineered tissues. While activation of the myofibroblast phenotype has been studied extensively, whether myofibroblasts are "cleared" by phenotypic reversal or by apoptosis remains controversial.
View Article and Find Full Text PDFJ Long Term Eff Med Implants
December 2016
Valvular interstitial cells (VICs) are the major cell type within aortic valve leaflets. VICs are able to exhibit a spectrum of phenotype characteristics including those of fibroblasts, smooth muscle cells, and myofibroblasts. VICs are responsible for valve maintenance and repair, yet excessive persistence of the myofibroblast phenotype is implicated in a number of valve diseases, including calcific aortic valve disease and fibrosis.
View Article and Find Full Text PDFA quantitative understanding of the complex interactions between cells, soluble factors, and the biological and mechanical properties of biomaterials is required to guide cell remodeling toward regeneration of healthy tissue rather than fibrocontractive tissue. In the present study, we characterized the combined effects of boundary stiffness and transforming growth factor-β1 (TGF-β1) on cell-generated forces and collagen accumulation. We first generated a quantitative map of cell-generated tension in response to these factors by culturing valvular interstitial cells (VICs) within micro-scale fibrin gels between compliant posts (0.
View Article and Find Full Text PDFThe processes of development, repair, and remodeling of virtually all tissues and organs, are dependent upon mechanical signals including external loading, cell-generated tension, and tissue stiffness. Over the past few decades, much has been learned about mechanotransduction pathways in specialized two-dimensional culture systems; however, it has also become clear that cells behave very differently in two- and three-dimensional (3D) environments. Three-dimensional in vitro models bring the ability to simulate the in vivo matrix environment and the complexity of cell-matrix interactions together.
View Article and Find Full Text PDFPatients with repaired tetralogy of Fallot account for the majority of cases with late onset right ventricle (RV) failure. A new surgical procedure placing an elastic band in the right ventricle is proposed to improve RV function measured by ejection fraction. A multiphysics modeling approach is developed to combine cardiac magnetic resonance imaging, modeling, tissue engineering and mechanical testing to demonstrate feasibility of the new surgical procedure.
View Article and Find Full Text PDFObjective: Patients with repaired tetralogy of Fallot account for most cases of late-onset right ventricle failure. The current surgical approach, which includes pulmonary valve replacement/insertion, has yielded mixed results. A new surgical option of placing an elastic band in the right ventricle is proposed to improve right ventricular cardiac function as measured by the ejection fraction.
View Article and Find Full Text PDFImage-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions.
View Article and Find Full Text PDF